⑴ 奇变偶不变符号看象限怎么理解
“奇变偶不变”的意思是:
例如cos(270°-α)=-sinα中,270°是90°的3(奇数)倍所以cos变为sin,即奇变;又sin(180°+α)=-sinα中,180°是90°的2(偶数)倍所以sin还是sin,即偶不变。

“符号看象限”的意思是:
通过公式左边的角度所落的象限决定公式右边是正还是是负。例如cos(270°-α)=-sinα中,视α为锐角,270°-α是第三象限角,第三象限角的余弦为负,所以等式右边为负号。
又如sin(180°+α)=-sinα中,视α为锐角,180°+α是第三象限角,第三象限角的正弦为负,所以等式右边有负号。注意:公式中α可以不是锐角,只是为了记住公式,视α为锐角。
⑵ 口决“奇变偶不变,符号看象限”是怎么理解的能详细给我说说吗
奇变指π/2前面的系数奇数,如sin变cos,cos变sin
偶不变指π/2前面的系数偶数,如sin,cos,tan都不变
符号看象限,建议你每次以α=45度带入前面表达式,正就+,负就是-。
多做就熟练了。
⑶ 奇变偶不变,符号看象限……怎么理解…
明天问你的初中数学老师
⑷ 高中数学 奇变偶不变 符号看象限 怎么理解 最好举个例子
首先任何一个角都可以变成 α + k* π/2 的形式,α 是锐角,k是任意整数.
奇变偶不变就是说 如果加的是 π/2 的奇数倍(如 π/2,3π/2等),那么就要换函数了,sin换成cos,tan 换成 cot ,sec 换成cot,而符号就看象限,如果换之前的函数在 α + k* π/2 所在象限的值负的,那么换了之后就得 加一个负号,如 cos( α+π/2),这个是属于奇变,所以就换成 sin,但是cos在第二象限的值为负(因为α是锐角,所以加了之后就在第二象限),所以还得添一个负号,所以答案就是 -sinα
那如果是偶数倍,就不用换函数了,只需看那个角度所在象限就可以咯,如果导致那个函数值为负,那么添负号就可以了.比如说,cos(α+π)= -cosπ .
⑸ 奇变偶不变 符号看象限什么意思
“奇变偶不变,符号看象限”是三角函数里关于诱导公式的一句口诀。
“奇变偶不变”的意思是:例如cos(270°-α)=-sinα中,270°是90°的3(奇数)倍所以cos变为sin,即奇变;又sin(180°+α)=-sinα中,180°是90°的2(偶数)倍所以sin还是sin,即偶不变。
“符号看象限”的意思是:通过公式左边的角度所落的象限决定公式右边是正还是是负。例如cos(270°-α)=-sinα中,视α为锐角,270°-α是第三象限角,第三象限角的余弦为负,所以等式右边为负号。又如sin(180°+α)=-sinα中,视α为锐角,180°+α是第三象限角,第三象限角的正弦为负,所以等式右边有负号。注意:公式中α可以不是锐角,只是为了记住公式,视α为锐角。
常用的诱导公式:
sin(90°-α)=cosαsin(90°+α)=cosα
sin(270°-α)=-cosαsin(270°+α)=-cosα
sin(180°-α)=sinαsin(180°+α)=-sinα
sin(360°-α)=-sinαsin(360°+α)=sinα
cos(90°-α)=sinαcos(90°+α)=-sinα
cos(270°-α)=-sinαcos(270°+α)=sinα
cos(180°-α)=-cosαcos(180°+α)=-cosα
cos(360°-α)=cosαcos(360°+α)=cosα
以上内容参考 网络-三角函数公式
以上内容参考 网络-三角函数
⑹ 奇变偶不变,符号看象限 什么意思
sin(kπ/2±a)
=
奇变偶不变:即:k为奇数时,结果是cos;
k为奇数时,结果仍是sin;
符号看象限:即:首先把a看做锐角,根据k值,看kπ/2±a在第几象限
在根据sin在该象限的符号确定±
对于cos(kπ/2±a)
=
也是如此
如:cos(7π/2+a)
=
sina
(奇变,7π/2+a在第四象限为正)
cos(7π/2-a)
=-sina
(奇变,7π/2-a在第三象限为负)
cos(6π/2-a)
=-cosa
(偶不变,3π-a在第二象限为负)
⑺ 奇变偶不变符号看象限是什么意思
奇变偶不变,符号看象限是诱导公式的口诀。奇变偶不变(对k而言,指k取奇数或偶数),符号看象限(看原函数,同时可把α看成是锐角)。
以下是诱导公式的相关介绍:
诱导公式是指三角函数中,利用周期性将角度比较大的三角函数,转换为角度比较小的三角函数的公式。 诱导公式有六组,共54个。
公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α所在象限的原三角函数值的符号可记忆:水平诱导名不变;符号看象限。
奇变偶不变(对k而言,指k取奇数或偶数),符号看象限(看原函数,同时可把α看成是锐角)。各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”。
以上资料参考网络——诱导公式
⑻ 什么叫奇变偶不变,符号看象限
奇变偶不变,符号看象限是诱导公式的口诀。
奇变偶不变(对k而言,指k取奇数或偶数),符号看象限(看原函数,同时可把α看成是锐角)。公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α所在象限的原三角函数值的符号可记忆:水平诱导名不变;符号看象限。
各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”。
(8)奇变偶不变符号看象限怎么理解扩展阅读:
当奇变偶不变,先暂不考虑正负号的情况:
1、当k为奇数时,终边上的点P'(±y,±x)与原终边上的点P(x,y)横纵坐标正好相反,所以对应的三角比要变;
2、当k为偶数时,终边上的点P'(±x,±y)与原终边上的点P(x,y)横纵坐标没有变化,所以对应的三角比不变;
符号看象限:使用这句口诀时,都是假设原角是锐角,因为锐角的任意三角比都是正的,这样判断正负号的时候,就不用考虑三角比本身的正负情况。
⑼ 奇变偶不变 符号看象限怎么理解
奇变偶不变,符号看象限是诱导公式的口诀。
奇变偶不变(对k而言,指k取奇数或偶数),符号看象限(看原函数,同时可把α看成是锐角)。公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α所在象限的原三角函数值的符号可记忆:水平诱导名不变;符号看象限。
各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”。
规律
公式一到公式五函数名未改变, 公式六函数名发生改变。
公式一到公式五可简记为:函数名不变,符号看象限。即α+k·360°(k∈Z),﹣α,180°±α,360°-α的三角函数值,等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号。
上面这些诱导公式可以概括为:对于kπ/2±α(k∈Z)的三角函数值,
①当k是偶数时,得到α的同名函数值,即函数名不改变;
②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan。(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。(符号看象限)