当前位置:首页 » 运动资讯 » 可以实现时间分集的有
扩展阅读
可以教我们说相声的app 2025-08-18 22:57:02

可以实现时间分集的有

发布时间: 2023-03-24 05:59:35

Ⅰ CDMA调制过程中,以下哪些可以实现时间分集 A. 卷积编码; B. 交织; C. Walsh函数; D. 增加尾比特;

答案AB,岁袭咐电信网优题乎纯库中有这题

快衰落有哪些种类?抵抗快衰落的方法有哪些?
1、空间选择性衰落:采用空间分集、极化分集、发射分集;
2、时间选择性衰落:采用时间分集-符合交织、检错、纠错编码、RAKE接收技术;
3、频率禅唤选择性衰落:采用频率分集-扩频。

Ⅱ 分集接收技术的技术分类

总结起来,发射分集技术的实质可以认为是涉及到空间、时间、频率、相位和编码多种资源相互组合的一种多天线
技术。根据所涉及资源的不同,可分为如下几个大类: 我们知道在移动通信中,空间略有变动就可能出现较大的场强变化。当使用两个接收信道时,它们受到的衰落影响是不相关的,且二者在同一时刻经受深衰落谷点影响的可能性也很小,因此这一设想引出了利用两副接收天线的方案,独立地接收同一信号茄昌,再合并输出,衰落的程度能被大大地减小,这就是空间分集。
空间分集是利用场强随空间的随机变化实现的,空间距离越大,多径传播的差异就越大,所接收场强的相关性就越小。这里所提相关性是个统计术语,表明信号间相似的程度,因此必须确定必要的空间距离。经过测试和统计,CCIR建议为了获得满意的分集效果,移动单元两天线间距大于0.6个波长,即d>0.61,并且最好选在l/4的奇数倍附近。若减小天线间距,即使小到1/4,也能起到相当好的分集效果。
空间分集分为空间分集发送和空间分集接收两个系统。其中空间分集接收是在空间不同的垂直高度上设置几副天线,同时接收一个发射天线的微波信号,然后合成或选择其中一个强信号,这种方式称为空间分集接收。接收端天线之间的距离应大于波长的一半,以保证接收天线输出信号的衰落特性是相互独立的,也就是说,当某一副接收天线的输出信号很低时,其他接收天线的输出则不一定在这同一时刻也出现幅度低的现象,经相应的合并电路从中选出信号幅度较大、信噪比最佳的一路,得到一个总的接收天线输出信号。这样就降低了信道衰落的影响,改善了传输的可靠性。
空间分集接收的优点是分集增益高,缺点是还需另外单独的接收天线。
空间分集还有两类变化形式:
. 极化分集:它利用在同一地点两个极化方向相互正交的天线发出的信号可以呈现不相关的衰落特性进行分集接收,即在收发端天线上安装水平、垂直极化天线,就可以把得到的两路衰落特性不相关的信号进行极化分集。优点:结构紧凑、节省空间;缺点:由于发射功率要分配到两副天线上,因此有3dB的损失。
.角度分集:由于地形、地貌、接收环境的不同,使得到达接收端的不同路径信号可能来自不同的方向,这样在接收端可以采用方向性天线,分别指向不同的到达方向。而每个方向性天线接收到的多径信号是不相关的。 频率分集是采用两个或两个以上具有一定频率间隔的微波频率同时发送和接收同一信息,然后进行合成或选择,利用位于不同频段的信号经衰落信道后在统计上的不相关特性,即不同频段衰落统计特性上的差异,来实现抗频率选择性衰落的功能。实现时可以将待发送的信息分别调制在频率不相关的载波上发射,所谓频率不相关的载波是指当不同的载波之间的间隔大于频率相干区间,即载波频率的间隔应满足:
分集技术
式中:
△f为载波频率间隔,Bc为相关带宽,△Tm为最大多径时延差。
当采用两个微波频率时,称为二重频率分集。同空间分集系统一样,在频率分集系统中要求两个分集接收信号相关性较小拦告(即频率相关性较小),只有这样,才不会使两个微波频率在给定的路由上同时发生深衰落,并获得较好的频率分集改善效果。在一定的范围内两个微波频率f1与f2相差,即频率间隔△ f=f2-f1越大,两个不同频率信号之间衰落的相关性越小。
频率分集与空间分集相比较,其优点是在接收端可以减少接受天线及相应设备的数量,缺点是要占用更多的频带资源,所以,一般又称它为带内(频带内)分集,并且在发送端可能需要采用多个发射机。 时间分集是将同一信号在不同时间区间多次重发,只要各次发送时间间隔足够大,则各次发送降格出现的衰落将是相互独立统计的。时间分集正是利用这些衰落在统计上互不相关的特点,即时间上衰落统计特简纳明性上的差异来实现抗时间选择性衰落的功能。为了保证重复发送的数字信号具有独立的衰落特性,重复发送的时间间隔应该满足:
分集技术
fm为衰落频率,V为移动台运动速度,最后一个参数为工作波长。
若移动台是静止的,则移动速度v=0,此时要求重复发送的时间间隔才为无穷大。这表明时间分集对于静止状态的移动台是无效果的。时间分集与空间分集相比较,优点是减少了接收天线及相应设备的数目,缺点是占用时隙资源增大了开销,降低了传输效率。 在移动环境下,两副在同一地点,极化方向相互正交的天线发出的信号呈现出不相关的衰落特性。利用这一特点,在收发端分别装上垂直极化天线和水平极化天线,就可以得到2 路衰落特性不相关的信号。所谓定向双极化天线就是把垂直极化和水平极化两副接收天线集成到一个物理实体中,通过极化分集接收来达到空间分集接收的效果,所以极化分集实际上是空间分集的特殊情况,其分集支路只有2 路。
这种方法的优点是它只需一根天线,结构紧凑,节省空间,缺点是它的分集接收效果低于空间分集接收天线,并且由于发射功率要分配到两副天线上,将会造成3dB的信号功率损失。分集增益依赖于天线间不相关特性的好坏,通过在水平或垂直方向上天线位置间的分离来实现空间分集。
而且若采用交叉极化天线,同样需要满足这种隔离度要求。对于极化分集的双极化天线来说,天线中两个交叉极化辐射源的正交性是决定微波信号上行链路分集增益的主要因素。该分集增益依赖于双极化天线中两个交叉极化辐射源是否在相同的覆盖区域内提供了相同的信号场强。两个交叉极化辐射源要求具有很好的正交特性,并且在整个120“扇区及切换重叠区内保持很好的水平跟踪特性,代替空间分集天线所取得的覆盖效果。为了获得好的覆盖效果,要求天线在整个扇区范围内均具有高的交叉极化分辨率。双极化天线在整个扇区范围内的正交特性,即两个分集接收天线端口信号的不相关性,决定了双极化天线总的分集效果。为了在双极化天线的两个分集接收端口获得较好的信号不相关特性,两个端口之间的隔离度通常要求达到30dB以上。

Ⅲ GSM系统主要采用什么分集接收技术

在接收上可以分为
频率分集:采用跳频实现
空间分集:在基站侧采用两根以上的天线接收从手机发送过来的信号。
极化分磨世集:在基站侧采用一配搭根极化方式互相垂直的天线接收手机信号。
时间分集:在培游拿GSM空中接口物理层通过交织实现。

Ⅳ 多径衰落的防范措施

多径对数字信号通信的影响可分为包络衰落(平坦衰落或非选择性衰落)、时延散布(频率选择性衰落)和随机调频或调相(时间选择性衰落)。[9]信号经过移动通信信道传输所产生的误码,可以用增加发射机的功率来减小;但即使把功率增到无限大,也只能把差错减小到一定的程度。此时的比特差错率称为剩余比特差错率,或不可检比特差错率,其大小与移动台速度有关。速度越高,剩余比特差错率越大并可能超过实际要求的比特差错率,因而通常采用分集接收、自适应均衡及纠错码等技术来克服。[9]
采用分集技术主要是充分利用传输中多径信号的能量来改善传输中的可靠性。实际上它是利用信号的基本参量在空间域、频率域和时间域中分散和收集的技术,因为“分”与“集”本身就是一对矛盾。为了在接收端得到几乎相互独立的不同路径,可以通过空间域、频绝郑率域和时间域的不同角度、不同的方法和措施来实现。[9] 空间分集主要是利用不同的接收空间(地点)所接收到信号衰落的独立性,来实现抗衰落的功能。空间分集的基本构成:发射端一副天线发送,接收端可用多副(如n副)天线来接收,各接收天线之间的距离为d。空间分集示意图如右图所示。

若空间分集中n副天线的尺寸、增益都相同,则空间分集除了可获得抗衰落的分集增益以外,还可获得每副天线3dB的设备增益。
带反馈的空间分集
适用于模拟调频方案,它的基地台发射机有多副天线,但工作时只使用一副天线。当移动台接收信号低于某一门限时立即反馈一信号,要求基地台更换天线。反馈信息最早是叠加于基带信息频谱之上传输的,在数据传输的分集方案中枣宏改采用移动台向基地台发出的数字信号中每隔Ⅳ比特插入1比特转换信息(1或0),以此来判断是否需要更换天线。为了转换时延,Ⅳ值不能太大,否则会降低信道利用率。这种方式虽然原理和设备都简单,但它的天线转换带有盲目性,不能保证每次天线转换一定都能改善通信质量。另外它只适用一个基地台到一个移动台之间的点对点通信,若对多信道共用天线的基地台,这种技术就难以实现了。
时分再传空间分集
最早用于DPSK通信系统。是在基地台用多副天线作为空间接收分集,同时测量各天线支路信号相位的延迟,然后反过来以这些相位信息对基地台发向各天线支路的信号进行预处理,以保证各天线支路所发出去的信号到达移动台接收点(单副天线)时能同相相加。这种方式缺点较多:①通信只能同频工作;②基地台要实时测量移动台的信号参数,必须由移动台向基地台改善基准载波,这就限定了双方要采用时分的方式相互交换信息,额外开销很大;⑧基地台与移动台天线高度、发射功率等都不同,故两个方向的传播条件也不同,会影响分集效果。[11]
极化分集
极化分集是利用在同一地点两个极化方向相互正交的天线发出的信号,即对呈现出不相关的衰落特性进行分集接收。也就是在收端和发端的双方天线上安装水平与垂直极化天线,就可以把得到的两路衰落特性不相关的信号进行极化分集。极化分集的优点是天线结构比较紧凑,可以节省一些空间,但缺点则由于要把发射功率分配到两副天线上,困此有3dB损失。
角分集
由于接收端的环境是受地形、地貌以及建筑物等的影响,环境不相同,使得到达接收端的不同路径信号也会来自不同的方向,所以在接收端可采用方向性天线,分别接收来自不同方向的电波,角分集就可以完成这个要求,而角分集每个方向性天线接收到的多径信号也是不相关的。 对于一个随机衰落的信号来说,当采样时间间隔足够大时,两个采样点之间的衰落是互不相关的,因此可以利用这一特性可以来实现时间分集技术。
将需要发送的信号每隔一定时间间隔(大于时间相关区域AT)进行霞复发送,这样,在接收端就可以得到n条独立的分集支路。只要时间域卜的时间间隔垃大于时间相关区域△丁,即可实现时间凳判分集。即:
△f≥A丁=1/B(3.18)其中8为多普勒频移的扩散区间,它与移动台的运动速度成正比。可见,时间分集对处r静止状态的移动台是不起作用的。
与空间分集相比,时间分集其优点是减少了接收天线数量,但缺点是要占用更多的时隙资源而降低了传输效率。 上面介绍的空间分集、频率分集和极化分集、角分集等都属于显分集,因为它们明显地采用了多种设备在不同空问、不同频率和不同极化方向接收合并而来实现分集技术的,故称显分集。随着通信技术的迅速发展,分集技术也在不断发展,其中一种是利用信号设计技术将分集作用隐含在被传输的信号之中,这种方式称为隐分集。前面曾提到过的信道交织和抗衰落纠错编码等都属于隐分集技术,下面再作些补充介绍,另外多径分集的RAKE接收技术也是隐分集。
时频编码(时频调制)
这种方式是把频率域或时间域,或频率域,时间域划分成一些互不重叠的单元,然后将码元分散到这些单元中去传输,使各码元在传输时遭受的衰落各不相关而起到抗多径衰落的分集效果。
时频调制是在PSK基础上发展的,也叫TFSK。若是M元信号,则叫MTFSK。M=4时,则为4TFSK,它是在接收端分4个支路分别对4个频率进行检测和采样,在每个码元内有4×4=16个采样值。把这些采样值分别延迟到码元末尾并对齐,根据预定的编码规则进行组合和比较,选出最大的判决输出。4TFSK具有与四重频率分集相似的抗衰落性能,而功率不分散,但缺点是高频带宽要增大4倍,且设备也较复杂。
也有在时频编码基础上再加上相位调制,从而把传输速率提高一倍(也提高了频率利用率),这种方式称时频相编码(或调制)。[11]
跳频
跳频是一种抗干扰措施,在一定条件下也具有抗多径干扰的能力,若把跳频与其他抗衰落措施合用,还可获得抗多径衰落的能力。
设跳频时隙宽度为码元宽度丁,跳频周期为Ⅳr,剧3.43(a)中实线为信号跳频形式,也是接收机的信号频率五序列,虚线为本振频率.而序列,如比五差个中频’,当五和丙序列完全同步,则混频后得到^信号,当疋和而序列失步并大到一个码元宽度L见网3.43(b),则混频后的信号将落在中频以外而收不到。
当传播路径的一条为直射波,另一条为折射波时,两者时延差为AT。若F≤AT≤(^L1)丁,则由多径引起的码问串扰可以排除;若AT<丁,则两条路径到达接收点的信号将产生干涉性衰落而没有码间串扰。所以,跳频抗多径的条件是△丁≤(^L一1)r,但并没有解决干涉性衰落。
移动通信主要在几百兆赫频段,相应的传播多径时延通常为微秒级,跳频速率一般每秒为几百跳,即跳频时宽度为毫秒级,故多径引起的干扰不是丰要矛盾,而主要是抗多径衰落。现在在这个频段中已有一些通信系统采用跳频和交织编码与前向纠错一起使用来抗多径衰落,它们把码字按一定规律扩散和交织,并把码元分散到不同的频率一时间单元中去抗衰落,再加上载波频率是跳变(每秒l25跳),跳距又较大(300kHz),能较好地实现既抗多径干扰,又抗多径衰落。
7.6多径分集
多径分集主要是采用扩展频谱技术来增大系统的带宽,提高信道传输速率,以达到分离多径和利用多径的目的。
利用扩频实现多径分集的RAKE接收技术,采用78.74b/s的数据传输速率,码元宽度丁为l2.7us,采用127位长的m序列扩频,子码宽度为l009s,由此系统带宽增大到l0MHz,当最大传输时延为lOus时,其最大可分辨的多径个数为8/Bo=BT=100(B0为信道的相干带宽)。RAKE接收技术结构复杂,调整困难,并且不适用于移动接收机,后来有人提出一种简化的称为检波后积分(PDI)接收机,能把分散到一定范围的多径分量收集,从而实现多径分集,但其系统性能比RAKE差。
使用多径分集也是有条件的,首先系统必须是宽带工作,因它是以宽带扩频为基础的,所以带宽应远大于相干带宽;其次扩频前信号码元宽度应大于或接近于信道传输的最大时延,否则信号经相关处理后,其相关峰会散布到多个码元间隔中,使前后相邻码元无法分布;第三是扩频后子码宽度不能太大,即信道传输速率不能太低,否则多径分量也将无法分离和利用。
RAKE接收技术在CDMAIS95系统中已经使用,这里不作介绍了。
7.7分集合并技术
分集接收中,接收端从不同的n个独立信号支路所获得的信号,可以通过不同形式的合并技术来获得分集增益。如果从合并所处的位置来看,合并可以在检测器以前,即在中频和射频上进行合并,而大部分是在中频上合并。合并也可以在检测器以后,即在基带上进行合并。
合并主要可以分为3种,即:最大比值合并、等增益合并和选择式合并。
最大比值合并是在接收端由n个分集支路,经过相位调整后,按照适当的增益系数,同相相加,再送入检测器进行检测。这种合并方式是信噪比越人,对合并后的信号贡献越大,它的合并增益与分集支路数量n成正比。
等增益合并是在最大比值合并方式中取某一个分集支路(如第i个分集支路),并取第i个分集支路的信号幅度A:=1(il,2,…,n)。当n(分集重数)较大时,等增益合并与最大比值合并相差不多,约仅差1dB左右。另外,等增益合并实现比较容易,设备也比较简单。选择式合并是有/'/个接收机,接收端是i一1,2,minin的n个分集支路的接收机,在i个接收机巾利用选择逻辑来选择其中具有最大基带信噪比的某一路基带作为输出。但每增加一条分集支路,对选择式分集输出信噪比的贡献仅为总分集支路数的倒数倍。

Ⅳ 为什么交织编码起到了时间分集作用

交织编码的目的是把一个较长的突发差错离散成随机差错,再用纠正随机差错的编码(FEC)技术消除随机差错。交织深度越大,则离散度越大,抗突发差错能力也就越强。但交织深度越大,交织局稿编码处理时间越长,从而造成数据传输时延增大,也就是说,交织编码是以时间为代价的。因此,交织编码属于时间隐分集。

举个例子,你想传输一段00 11 22 33 44 55 66 77 88 99的信息,如果交织深度比较大的话可以以09 19 18 27 26 37 36 45 45 08来传输,但是你想解码00段信息的话,必须等到08传睁尘完后才能开始,中间需要等待10个信息段的时间,所以说交织起到了时间分集的悉腊禅作用。

Ⅵ 分集技术的技术分类

目前常用的分集方式主要有两种:宏分集和微分集。 微分集是一慧旅种减少快衰落影响的分集技术,在各种无线通信系统中都经常使用。目前微分集采用的主要技术有:空间分集、极化分集、频率分集、场分量分集、角度分集、时间分集等分集技术。
(1)空间分集
空间分集的基本原理是在任意两个不同的位置上接收同一信号,只要两个位置的距离大到一定程度,则两处所收到的信号衰落是不相关的,也就是说快衰落具有空间独立性。
空间分集也称为天线分集,是无线通信中使用最多的分集技术。
空间分集至少要两付天线,且相距为d,间隔距离d与工作波长、地物及天线高度有关,在移动通信中通常取:市区d=0.5,郊区d=0.8,d值越大,相关性就越弱。 图3 空间分集
(2)频率分集
频率分集的基本原理是频率间隔大于相关带宽的两个信号的衰落是不相关的,因此,可以用多个频率传送同一信息,以实现频率分集。
根据相关带宽的定义,即:

式中为时延扩展。在市区,=0.3μs,此时Bc=53kHz。
频率分集需要用两个发射机来发送同一信号,并用两个接收机来接收同一信号。
这种分集技术多用于频分双工(FDM)方式的视距微波通信中。由于对流层的传播和折射,有时会在传播中发生深度衰落。
在实际的使用过程中,常称作1∶N保护交换方式。当需要分集时,相应的业务被切换到备用的一个空闲通道上。其缺点是:不仅需要备用切换,而且需要有和频率分集中采用的频道数相等的若干个接收机。 图4 频率分集
(3)极化分集
极化分集的基本原理是两个不同极化的电磁波具有独立的衰落,所以发送端和接收端可以用两个位置很好首近但为不同极友碧数化的天线分别发送和接收信号,以获得分集效果。
极化分集可以看成是空间分集的一种特殊情况,它也要用两付天线(二重分集情况),但仅仅是利用不同极的电磁波所具有的不相关衰落特性,因而缩短了天线间的距离。
在极化分集中,由于射频功率分给两个不同的极化天线,因此发射功率要损失约3dB左右。
(4)场分量分集
电磁波E场和H场载有相同的消息,而反射机理是不同的。
一个散射体反射的E波和H波的驻波图形相位相差90°,即当E波为最大时,H波最小。
在移动信道中,多个E波和H波叠加,Ex,Hx,Hy的分量是互相独立的,因此通过接收3个场分量,也可以获得分集的效果。
场分量分集不要求天线间有实体上的间隔,因此适用于较低(100MHz)工作频段。当工作频率较高时(800~900MHz),空间分集在结构上容易实现。
(5)角度分集
角度分集的作法是使电波通过几个不同的路径,并以不同的角度到达接收端,而接收端利用多个锐方向性接收天线能分离出不同方向来的信号分量,由于这些信号分量具有相互独立的衰落特性,因而可以实现角度分集并获得抗衰落的效果。
(6)时间分集
快衰落除了具有空间和频率独立性以外,还具有时间独立性,即同一信号在不同时间、区间多次重发,只要各次发送的时间间隔足够大,那么各次发送信号所出现的衰落将是彼此独立的,接收机将重复收到的同一信号进行合并,就能减小衰落的影响。
时间分集主要用于在衰落信道中传输数字信号。

Ⅶ 极化分集 空间分集 分集技术 怎么回事 不甚求解

为了达到这一目的,可以通过多种技术来实现,从影响接收端信号功率的三个主要因素来分析:第一、自由空间的传播银空损耗和弥散,这可通过加大发射机功率来改善;第二、地形起伏、建筑物及障碍物的遮挡引起的阴影衰落,这可通过“宏分集”技术来改善;第三、在传输路径中各种锋乱瞎物体产生的直射波、反射波和散射波的相互影响,即多径衰落,以及多普勒频移产生的损耗,这可通过“微分集”技术来改善。从以上的分析可以看出,分集技术对改善无线传输链路的性能可以起到很大的作用。 分集技术是指通过查找和利用自然界无线传播环境中独立的(至少是高度不相关的)多径信号来实现,简单的说,如果一条无线传播路径中经历陪芦了深度衰落,而另一条相对独立的路径中可能仍包含着较强的信号,因此可以在多个信号中选择两个或更多的信号进行合并,这样可以同时提高接收端的瞬时信噪比和平均信噪比,一般可提高20dB到30dB。分集技术是移动通信的一种抗衰落技术,是一种用相对较低廉的投资就可以大幅度的改进无线链路性能的强有力的接收技术。分集技术就是利用两个或更多的不相关信号进行处理,不相关信号的采集可以通过空域、时域和频域三种方式实现,具体的实现方法有以下几种: 第一、空间分集。也称天线分集,是移动通信中使用较多的分集形式,简单的说,就是采用多付接收天线来接收信号,然后进行合并。为保证接收信号的不相关性,这就要求天线之间的距离足够大,在理想情况下,接收天线之间的距离只要波长λ的一半就可以了。 第二、极化分集。在移动环境下,空中的水平路径和垂直路径是不相关的,因而信号也呈现不相关的衰落特性。这就可在发射和接收端各装两付天线,一个水平极化天线,一个垂直极化天线,这就可以得到两个不相关的信号。这一技术在蜂窝移动用户激增时,在改进链路的传输效率和提高容量方面有很明显的效果。 第三、角度分集。信号在传输过程中受环境的影响,使得到达接收的信号不可能是同方向的,这样在接收端安装方向性天线就可得到不相关的信号进行合并。 第四、频率分集。理论上,不相关信道产生同样衰落的概率是各自产生的衰落概率的乘积。频率分集是指在多于一个载频上传送信号,其原理是基于在信道相干带宽之外的频率上不会出现同样的衰落。这一技术比空间分集节省天线数目,缺点是不仅需要占用更多的频谱资源,而且需要有和频率分集中采用的频道数相等的若干个接收机,但对于特殊业务,这个费用也许是值得的。这一技术经常用在频分双工(FDM)方式的视距微波链路中,在实际应用中,有一种工作方式被称作1:N保护交换方式。 第五、时间分集。对于一个随机衰落的信号,若对其振幅进行顺序取样,对时间间隔大于相干时间的两个样点是互不相关的。这一技术是指以超过信道相干时间的时间间隔重复发送信号,以便让再次收到的信号有独立的衰落环境,从而产生分集效果。时间分集的性能基本由移动台的运动速度决定,也就是说决定于重复发送信号之间的衰落特性,若移动台是静止的,时间分集就失效了,因为相干时间是和移动台的运动速度成反比的。实践证明,当移动台的运动速度大于40Km/h,时间分集能获得很好的效果。

Ⅷ 多径衰落详细资料大全

在通信系统中,由于通信地面站天线波束较宽,受地物、地貌和海况等诸多因素的影响,使接收机收到经折射、反射和直射等几条路迳到达的电磁波,这种现象就是多径效应。这些不同路迳到达的电磁波射线相位不一致且具有时变性,导致接收信号呈衰落状态;这些电磁波射线到达的时延不同,又导致码间干扰。若多射线强度较大,且时延差不能忽略,则会产生误码,这种误码靠增加发射功率是不能消除的,而由此多径效应产生的衰落叫多径衰落,它也是产生码间干扰的根源。对于数字通信、雷达最佳检测等都会产生十分严重的影响。

基本介绍

  • 中文名 :多径衰落
  • 外文名 :multipathDecline
  • 领域 :信息科学
文献定义,产生原因,主要分类,瑞利衰落,频率选择性衰落,基本特性,分布特性,防范措施,分集接收,信号设计,自适应通信技术,分集方式,基本介绍,空间分集,频率分集,时间分集,隐分集,性能比较,

文献定义

文献中对多径衰落的定义如下: 1、多径衰落是指在微波信号的传播过程中,由于受地面或水面反射和大气折射的影响,会产生多个经过不同路迳到达接收机的信号,通过矢量叠加后合成时变信号.多径衰落可分为平衰落和频率选择性衰落。 2、信道时变多径特性造成接收信号电平的起伏现象被称为多径衰落.通常在移动信道中信号电平的起伏呈瑞利分布时这种信道称为瑞利衰落信道。 3、由于这种衰落由多径引起的所以称为多径衰落.在移动通信中多径衰落。以瑞利(Rayleigh)衰落为主,他是移动台在移动中受备知迟到不同路径来的同一信号源的折射或反射等信号所产生,他的变化是随机的,因此只能用统计或机率的观点来定量描述。 4、前者是由多径引起的,因此又称为多径衰落,它服从瑞利(Rayleigh)分布.它可能包含一段Text文本或一幅图片。g为真实重力值。 5、因此合成信号起伏很大,称为多径衰落。在分析卫星移动信道传播特性的机率分布模型时,多径效应主要是用瑞利分布描述衰落,简单的说是指接收点信号电平因受各种因素影响而随时间变化叫衰落。多径传播是由于无线传播环境的影响,在电波的传播路径上电波产生了反射、绕射和散射,这样当电波传输到接收天线时,信号不是单一路径来的,而是许多路径来的多个信号的叠加。 因为电波通过各个路径的距离不同,所以各个路径电波到达接收机的时间不同,相位也就不同。不同相位的多个信号在接收端叠加,有时是同相叠加而加强,有时是反相叠加猛培而减弱。这样接收信号的幅度将急剧变化,即产生了所谓的多径衰落。 图1 多径环境[2]

产生原因

移动通信的电波传播包括直射波、绕射波、散射波和反射波。当仅有直射波和一路反射波时,如果反射波路径变化,路程差变化,两路信号在接收点的相位也就发生变化。在陆地移动通信系统中,移动台往往工作在城市建筑群和其他地形地物较为复杂的环境中。由于移动台天线高度较低,大部分时间都“淹没”在城市建筑物的高度之下,根本没有视线路径。所以基站和移动台之间的电波传播几乎没有直射波形式,而是出现了多条路径的反射信号,以致到达接收天线的信号是来自不同传播路径的各电波的合成波。 图2 对流层散射传播路径[5] 由于传播路径不同,反射体的性质不同,使得到达接收点的各反射波的幅度和相位都是随机的。可能存在的直射波和众多不同路径仿李的反射波,在较小范围内不同位置的场强有时同相相加而变大,有时反相抵消而变小,形成驻波分布。而在移动通信环境中,即使周围环境不变,移动台在驻波场中的快速移动,也会造成接收天线接收的合成波的幅度快速和大范围的变化。这就形成了接收机所接收信号的多径快衰落现象。对于不同波段,不同传播方式,形成多径传播的机理不尽相同。三张附图说明了短波电离层反射信道与超短波、微波对流层散射信道和移动通信的多径衰落产生的原理。

主要分类

瑞利衰落

如果各条路径传输时延差别不大,而传输波形的频谱较窄(数位讯号传输速率较低),则信道对信号传输频带内各频率分量强度和相位的影响基本相同。此时,接收点的合成信号只有强度的随机变化,而波形失真很小。这种衰落称为一致性衰落,或称平坦型衰落。 如果传送端发射一个余弦波Acosωt,接收端接收到的一致性衰落信号是一个具有随机振幅和随机相位的调幅调相波,从频域来看,由单一频率变成了一个窄带频谱,这叫频率弥散。可见衰落信号实际上成为一个窄带随机过程,它的包络的一维统计特性服从瑞利分布,所以通常又称为瑞利衰落。

频率选择性衰落

如果各条路径传输时延差别较大,传输波形的频谱较宽(或数位讯号传输速率较高),则信道对传输信号中不同频率分量强度和相位的影响各不相同。此时,接收点合成信号不仅强度不稳定而且产生波形失真,数位讯号在时间上有所展宽,这就可能干扰前后码元的波形重叠,出现码间(符号间)干扰。这种衰落称为频率选择性衰落,有时也简称选择性衰落。

基本特性

多径衰落的基本特性表现为信号幅度的衰落和时延扩展。 从空间角度考虑多径衰落时,接收信号的幅度将随着移动台移动距离的变动而衰落,其中本地反射物所引起的多径效应表现为较快的幅度变化(快衰落),而其局部均值是随距离增加而起伏的,反映了地形变化所引起的衰落以及空间扩散损耗(慢衰落); 从时间角度考虑,由于信号的传播路径不同,所以到达接收端的时间也就不同,当基站发出一个脉冲信号时,接收信号不仅包含该脉冲,还将包括此脉冲的各个延时信号,这种由于多径效应引起的接收信号中脉冲的宽度扩展现象称为时延扩展。

分布特性

在性质上,多径快衰落属于一种微观(以毫秒计的短时间内)的快速变化。在移动通信中,多径衰落是对解调信号质量影响最大的一种衰落。那么移动通信中的多径快衰落具有怎样的分布特性呢? 如果发射信号是单一频率的信号Acosωct,可能存在的直射波和经多个路径传播的反射波到达接收点时形成的合成信号为: 式中:Ri(t)为第i条路径的接收信号幅度;τi(t)为第i条路径的传输时间;i(t)=c(t)τi(t)。 事实上,Ri(t)和i(t)随时间的变化与发射信号的载波周期相比,通常要缓慢得多,所以Ri(t)和i(t)可以认为是缓慢变化的随机过程,故式(21-1)可以写成 则R(t)可写成 式中:U(t)和分别为合成波R(t)的包络和相位。 由于Ri(t)和i(t)是缓慢变化的,因此xR(t)、xS(t)及包络U(t)﹑相位也是缓慢变化的。于是合成波R(t)可视为一个窄带过程。 由式(2)可见,单一载频的确知信号c(t),经多径传播后变成了包络和相位受到调制的窄带信号R(t)。所以多径效应在频谱上会引起色散。 xR(t)和xS(t)为R(t)的两个正交分量,由机率论中的大数定律,xR(t)和xS(t)应该是均值为零,方差为的高斯过程,其机率密度函式为: 它们的联合机率密度函式为: 为了得到U(t)的机率密度函式,可利用p(xR,xS)经适当变换得到合成信号R(t)的包络U(t)和相位的联合机率密度函式。再利用机率论中的边际机率公式可分别得到合成信号的包络U(t)和相位的机率密度函式为: 和 由式(21-3)和(21-4)可知,合成信号的幅度分布服从瑞利(Rayleigh)分布,而相位分布服从均匀分布。所以通常将移动通信中的多径快衰落称为瑞利衰落,又由于瑞利衰落对移动通信的影响最大,因而将移动通信信道称为瑞利信道。 当到达接收机的合成信号中有一个路径的信号明显较强时,可推导得到合成信号的包络将由瑞利分布变为莱斯(Ricean)分布: 式中 是当 时的零阶修正贝塞尔函式 莱斯分布也称广义瑞利分布。莱斯信道比瑞利信道要“友好”些。也就是说,信号通过莱斯信道比信号通过瑞利信道所受多径衰落的影响要小。

防范措施

分集接收

衰落作为一种乘性干扰,严重影响着通信系统的性能,因此必须采取相应的措施加以克服。比较有效的抗衰落措施有:分集接收就是将在接收端分散接收到的几个衰落情况不同(相互统计独立)的合成信号,再以一定的方式将它们合并集中,使总接收信号的信噪比得到改善,衰落的影响减小。这是一种历史较久、套用较广的克服衰落影响的有效方法。可用的分集方式有:空间分集、频率分集,角度分集、极化分集、时间分集等。

信号设计

所谓信号设计就是针对信道的情况,设计具有较强抗衰落能力的信号,并在发端收端采用相应的调制和检测技术。如采用多进制信号、时频相调制技术以及时频调制信号、伪噪声编码(伪随机编码)等扩频通信技术。

自适应通信技术

主要自适应均衡技术,就是根据信道对信号的影响,调整接收机参数,以抵消上述影响。例如,在数字微波通信中等容量的系统中,常以频域自适应均衡器对信道的频率特性进行补偿。在大容量系统中,除采用频域均衡器外,还采用了对波形进行补偿的时域自适应均衡器,效果显着。

分集方式

基本介绍

多径对数位讯号通信的影响可分为包络衰落(平坦衰落或非选择性衰落)、时延散布(频率选择性衰落)和随机调频或调相(时间选择性衰落)。[9]信号经过移动通信信道传输所产生的误码,可以用增加发射机的功率来减小;但即使把功率增到无限大,也只能把差错减小到一定的程度。此时的比特差错率称为剩余比特差错率,或不可检比特差错率,其大小与移动台速度有关。速度越高,剩余比特差错率越大并可能超过实际要求的比特差错率,因而通常采用分集接收、自适应均衡及纠错码等技术来克服。 采用分集技术主要是充分利用传输中多径信号的能量来改善传输中的可靠性。实际上它是利用信号的基本参量在空间域、频率域和时间域中分散和收集的技术,因为“分”与“集”本身就是一对矛盾。为了在接收端得到几乎相互独立的不同路径,可以通过空间域、频率域和时间域的不同角度、不同的方法和措施来实现。

空间分集

空间分集主要是利用不同的接收空间(地点)所接收到信号衰落的独立性,来实现抗衰落的功能。空间分集的基本构成:发射端一副天线传送,接收端可用多副(如n副)天线来接收,各接收天线之间的距离为d。空间分集示意图如右图所示。 若空间分集中n副天线的尺寸、增益都相同,则空间分集除了可获得抗衰落的分集增益以外,还可获得每副天线3dB的设备增益。 带反馈的空间分集 适用于模拟调频方案,它的基地台发射机有多副天线,但工作时只使用一副天线。当移动台接收信号低于某一门限时立即反馈一信号,要求基地台更换天线。反馈信息最早是叠加于基带信息频谱之上传输的,在数据传输的分集方案中采用移动台向基地台发出的数位讯号中每隔Ⅳ比特插入1比特转换信息(1或0),以此来判断是否需要更换天线。为了转换时延,Ⅳ值不能太大,否则会降低信道利用率。这种方式虽然原理和设备都简单,但它的天线转换带有盲目性,不能保证每次天线转换一定都能改善通信质量。另外它只适用一个基地台到一个移动台之间的点对点通信,若对多信道共用天线的基地台,这种技术就难以实现了。 时分再传空间分集 最早用于DPSK通信系统。是在基地台用多副天线作为空间接收分集,同时测量各天线支路信号相位的延迟,然后反过来以这些相位信息对基地台发向各天线支路的信号进行预处理,以保证各天线支路所发出去的信号到达移动台接收点(单副天线)时能同相相加。这种方式缺点较多:①通信只能同频工作;②基地台要实时测量移动台的信号参数,必须由移动台向基地台改善基准载波,这就限定了双方要采用时分的方式相互交换信息,额外开销很大;⑧基地台与移动台天线高度、发射功率等都不同,故两个方向的传播条件也不同,会影响分集效果。 极化分集 极化分集是利用在同一地点两个极化方向相互正交的天线发出的信号,即对呈现出不相关的衰落特性进行分集接收。也就是在收端和发端的双方天线上安装水平与垂直极化天线,就可以把得到的两路衰落特性不相关的信号进行极化分集。极化分集的优点是天线结构比较紧凑,可以节省一些空间,但缺点则由于要把发射功率分配到两副天线上,困此有3dB损失。 角分集 由于接收端的环境是受地形、地貌以及建筑物等的影响,环境不相同,使得到达接收端的不同路径信号也会来自不同的方向,所以在接收端可采用方向性天线,分别接收来自不同方向的电波,角分集就可以完成这个要求,而角分集每个方向性天线接收到的多径信号也是不相关的。 图5 空间分集示意图[10]

频率分集

频率分集是将需要传送的信息,先分别调制在不同载波上再传送到信道中。只要不同载波之间的频率间隔足够大频率分集技术就可以实现。可从图载波频率间隔△f中的公式求出载波频率间隔△f 图6 载波频率间隔△f[12]

时间分集

对于一个随机衰落的信号来说,当采样时间间隔足够大时,两个采样点之间的衰落是互不相关的,因此可以利用这一特性可以来实现时间分集技术。 将需要传送的信号每隔一定时间间隔(大于时间相关区域AT)进行霞复传送,这样,在接收端就可以得到n条独立的分集支路。只要时间域卜的时间间隔垃大于时间相关区域△丁,即可实现时间分集。即: △f≥A丁=1/B(3.18)其中8为都卜勒频移的扩散区间,它与移动台的运动速度成正比。可见,时间分集对处r静止状态的移动台是不起作用的。 与空间分集相比,时间分集其优点是减少了接收天线数量,但缺点是要占用更多的时隙资源而降低了传输效率。

隐分集

上面介绍的空间分集、频率分集和极化分集、角分集等都属于显分集,因为它们明显地采用了多种设备在不同空问、不同频率和不同极化方向接收合并而来实现分集技术的,故称显分集。随着通信技术的迅速发展,分集技术也在不断发展,其中一种是利用信号设计技术将分集作用隐含在被传输的信号之中,这种方式称为隐分集。前面曾提到过的信道交织和抗衰落纠错编码等都属于隐分集技术,下面再作些补充介绍,另外多径分集的RAKE接收技术也是隐分集。 时频编码(时频调制) 这种方式是把频率域或时间域,或频率域,时间域划分成一些互不重叠的单元,然后将码元分散到这些单元中去传输,使各码元在传输时遭受的衰落各不相关而起到抗多径衰落的分集效果。 时频调制是在PSK基础上发展的,也叫TFSK。若是M元信号,则叫MTFSK。M=4时,则为4TFSK,它是在接收端分4个支路分别对4个频率进行检测和采样,在每个码元内有4×4=16个采样值。把这些采样值分别延迟到码元末尾并对齐,根据预定的编码规则进行组合和比较,选出最大的判决输出。4TFSK具有与四重频率分集相似的抗衰落性能,而功率不分散,但缺点是高频频宽要增大4倍,且设备也较复杂。 也有在时频编码基础上再加上相位调制,从而把传输速率提高一倍(也提高了频率利用率),这种方式称时频相编码(或调制)。 跳频 跳频是一种抗干扰措施,在一定条件下也具有抗多径干扰的能力,若把跳频与其他抗衰落措施合用,还可获得抗多径衰落的能力。 设跳频时隙宽度为码元宽度丁,跳频周期为Ⅳr,剧3.43(a)中实线为信号跳频形式,也是接收机的信号频率五序列,虚线为本振频率.而序列,如比五差个中频’,当五和丙序列完全同步,则混频后得到^信号,当疋和而序列失步并大到一个码元宽度L见网3.43(b),则混频后的信号将落在中频以外而收不到。 图7调频抗多径示意图[11] 当传播路径的一条为直射波,另一条为折射波时,两者时延差为AT。若F≤AT≤(^L1)丁,则由多径引起的码问串扰可以排除;若AT<丁,则两条路迳到达接收点的信号将产生干涉性衰落而没有码间串扰。所以,跳频抗多径的条件是△丁≤(^L一1)r,但并没有解决干涉性衰落。 移动通信主要在几百兆赫频段,相应的传播多径时延通常为微秒级,跳频速率一般每秒为几百跳,即跳频时宽度为毫秒级,故多径引起的干扰不是丰要矛盾,而主要是抗多径衰落。在这个频段中已有一些通信系统采用跳频和交织编码与前向纠错一起使用来抗多径衰落,它们把码字按一定规律扩散和交织,并把码元分散到不同的频率一时间单元中去抗衰落,再加上载波频率是跳变(每秒l25跳),跳距又较大(300kHz),能较好地实现既抗多径干扰,又抗多径衰落。 6、多径分集 多径分集主要是采用扩展频谱技术来增大系统的频宽,提高信道传输速率,以达到分离多径和利用多径的目的。 利用扩频实现多径分集的RAKE接收技术,采用78.74b/s的数据传输速率,码元宽度丁为l2.7us,采用127位长的m序列扩频,子码宽度为l009s,由此系统频宽增大到l0MHz,当最大传输时延为lOus时,其最大可分辨的多径个数为8/Bo=BT=100(B0为信道的相干频宽)。RAKE接收技术结构复杂,调整困难,并且不适用于移动接收机,后来有人提出一种简化的称为检波后积分(PDI)接收机,能把分散到一定范围的多径分量收集,从而实现多径分集,但其系统性能比RAKE差。 使用多径分集也是有条件的,首先系统必须是宽频工作,因它是以宽频扩频为基础的,所以频宽应远大于相干频宽;其次扩频前信号码元宽度应大于或接近于信道传输的最大时延,否则信号经相关处理后,其相关峰会散布到多个码元间隔中,使前后相邻码元无法分布;第三是扩频后子码宽度不能太大,即信道传输速率不能太低,否则多径分量也将无法分离和利用。 RAKE接收技术在CDMAIS95系统中已经使用,这里不作介绍了。 7、分集合并技术 分集接收中,接收端从不同的n个独立信号支路所获得的信号,可以通过不同形式的合并技术来获得分集增益。如果从合并所处的位置来看,合并可以在检测器以前,即在中频和射频上进行合并,而大部分是在中频上合并。合并也可以在检测器以后,即在基带上进行合并。 合并主要可以分为3种,即:最大比值合并、等增益合并和选择式合并。 最大比值合并是在接收端由n个分集支路,经过相位调整后,按照适当的增益系数,同相相加,再送入检测器进行检测。这种合并方式是信噪比越人,对合并后的信号贡献越大,它的合并增益与分集支路数量n成正比。 等增益合并是在最大比值合并方式中取某一个分集支路(如第i个分集支路),并取第i个分集支路的信号幅度A:=1(il,2,…,n)。当n(分集重数)较大时,等增益合并与最大比值合并相差不多,约仅差1dB左右。另外,等增益合并实现比较容易,设备也比较简单。选择式合并是有/'/个接收机,接收端是i一1,2,minin的n个分集支路的接收机,在i个接收机巾利用选择逻辑来选择其中具有最大基带信噪比的某一路基带作为输出。但每增加一条分集支路,对选择式分集输出信噪比的贡献仅为总分集支路数的倒数倍。

性能比较

3种分集合并方式的性能比较如右图多径衰落中的曲线所示。 图8 分集合并方式的性能比较[13]