当前位置:首页 » 网络资讯 » 怎样修改r语言里数据集的变量
扩展阅读
南充迅达可以做网站吗 2025-07-05 15:46:27

怎样修改r语言里数据集的变量

发布时间: 2022-11-27 01:54:32

⑴ R语言一键制作Table 1,就是这么简单!

转自医学方

2019-07-4 Alexander

流行病学或者医学论文中,对研究对象基本情况的描述通常以表格的形式进行,并且放在结果部分的开头,即Table 1,主要内容是研究对象一般情况和研究变量或协变量的分组展示。

前几天文章修回过程中,花了两天时间分析数据,修改文章,其中有近1天的时间都在手动录入数据(从R studio里把分析结果整理到Excel或者word),这样除了花费时间外,还非常容易出错。之前一直想找时间通过R markdown把制作表格的过程程序化,可是效果并不理想。

这次痛定思痛,先从table 1开始,发现了几个不错的方法。其中一种个人觉得可读性和可编辑性都比较强,于是学习了一下,作为一个非常实用的工具分享给大家。

这里主要参考一篇博客Fast-track publishing using knitr: table mania,对细节进行了加工和注释。

1 数据的准备

数据主要来自于boot包的melanoma。加载后,看下数据的基本结构。

接下来对数据进行简单的整理,为后续分析做准备;

将分类变量定义为因子型并设置标签(这里建议设置一个新的变量,仅用于table 1的制作,不影响后续的分析);

2 安装和加载R包 Gmisc

后面两个包是加载“Gmisc”时要求加载的。

3 自定义函数、制作表格

根据已有函数自定义函数,并制作表格。定义一个函数,输入数据集的变量并得到该变量的统计结果:

函数定义完成后,建立一个空的列表,以储存每个变量的分析结果,并进行分析,将结果储存在列表中:

将所有结果merge到一个矩阵中,并建立rgroup(table1第一列的变量名) 和 n.rgroup(table 1第一列每个变量的行数):

结果如下:

当然,有些情况下,需要多加一个分组标题栏(column spanner),该怎么加呢?

如下:

结果如下:

4 导出结果

在R studio viewer窗口点击白色按钮,即可在浏览器中打开,然后复制粘贴到word可以进一步加工修饰。

是不是很刺激呢。
应该还有其他的导出方法,不过这个已经很方便了。

拓展功能选

⒈ 二分类变量只显示一个(比如男性和女性)。只要在getDescriptionStatsBy的"show_all_values"参数设置为FALSE即可;

⒉ 显示缺失值。getDescriptionStatsBy的"useNA"参数设置为"ifany",表示如果有缺失值就显示缺失值情况;如设置为“no”,表示始终不显示缺失值情况;“always”则表示无论是否有缺失值都显示缺失值情况;

⒊ Total一列是可以去掉的,getDescriptionStatsBy的"add_total_col"参数设置为FALSE即可。

不足之处

⒈ 差异性检验是采用非参的方法,虽然没有错,但是一般符合参数检验条件的数据还是要使用参数检验的方法,这里可以自行检验后再修改P-value;

⒉ Mean (SD)的展示形式有个括号感觉有点别扭,还不知道怎么去掉,有方法的小伙伴欢迎分享交流。

另外有一些其他的制作table 1的R包,比如table 1(R包的名字)包,tableone包,还有其他生成表格的R包(plyr等),个人浏览下来感觉这个最容易理解和掌握,其他包的功能有兴趣的可以再自行挖掘对比。

原文链接: https://mp.weixin.qq.com/s?src=11&timestamp=1562230826&ver=1707&signature=SxdO6A1qxNy-4k8AyE9wUMYKSarBLDydWO-vazmCNPJIAa5GfaBiFIghaO&new=1

⑵ r语言如何不改变excel中的格式

导入R语言后数据格式可能会变,不过不用担心,只需要输入代码,转换数据格式即可。例如,将数据集a的字符型变量x转化为数值型变量x,其代码如下:
a$x=as.numeric(a$x)

⑶ R语言数据集行列互换技巧

R语言数据集行列互换技巧
现在给大家介绍的数据处理技巧是长转宽,也就相当于Excel中的转置,不过用R语言实现的长转宽还有数据合并的功能,自然比Excel强大多了。
这里给大家介绍4个函数,其中melt()、dcast()来自reshape2包,gather()、spread()来自tidyr包
一、宽转长——melt()、gather()
[python] view plain

mydata<-data.frame(
name=c("store1","store2","store3","store4"),
address=c("普陀区","黄浦区","徐汇区","浦东新区"),
sale2014=c(3000,2500,2100,1000),
sale2015=c(3020,2800,3900,2000),
sale2016=c(5150,3600,2700,2500),
sale2017=c(4450,4100,4000,3200)
)
#宽转长——melt
mydata1<-melt(
mydata,
id.vars=c("address","name"),#要保留的主字段
variable.name = "Year",#转换后的分类字段名称(维度)
value.name = "Sale" #转换后的度量值名称
)

输出结果
[python] view plain

> mydata1<-melt(
+ mydata,
+ id.vars=c("address","name"),#要保留的主字段
+ variable.name = "Year",#转换后的分类字段名称(维度)
+ value.name = "Sale" #转换后的度量值名称
+ )
> mydata1
address name Year Sale
1 普陀区 store1 sale2014 3000
2 黄浦区 store2 sale2014 2500
3 徐汇区 store3 sale2014 2100
4 浦东新区 store4 sale2014 1000
5 普陀区 store1 sale2015 3020
6 黄浦区 store2 sale2015 2800
7 徐汇区 store3 sale2015 3900
8 浦东新区 store4 sale2015 2000
9 普陀区 store1 sale2016 5150
10 黄浦区 store2 sale2016 3600
11 徐汇区 store3 sale2016 2700
12 浦东新区 store4 sale2016 2500
13 普陀区 store1 sale2017 4450
14 黄浦区 store2 sale2017 4100
15 徐汇区 store3 sale2017 4000
16 浦东新区 store4 sale2017 3200
再来看看gather()函数怎么用
[python] view plain

> #宽转长——gather
> mydata1<-tidyr::gather(
+ data=mydata,
+ key="Year",
+ value="sale",
+ sale2014:sale2017
+ )
> mydata1
name address Year sale
1 store1 普陀区 sale2014 3000
2 store2 黄浦区 sale2014 2500
3 store3 徐汇区 sale2014 2100
4 store4 浦东新区 sale2014 1000
5 store1 普陀区 sale2015 3020
6 store2 黄浦区 sale2015 2800
7 store3 徐汇区 sale2015 3900
8 store4 浦东新区 sale2015 2000
9 store1 普陀区 sale2016 5150
10 store2 黄浦区 sale2016 3600
11 store3 徐汇区 sale2016 2700
12 store4 浦东新区 sale2016 2500
13 store1 普陀区 sale2017 4450
14 store2 黄浦区 sale2017 4100
15 store3 徐汇区 sale2017 4000
16 store4 浦东新区 sale2017 3200
和melt()函数不同,gather()函数需要指定关键字段key,以及关键字段对应的值value,但是gather()函数更加好理解。
二、长转宽——dcast()和spread()
还是用上面的data1数据集,先来看看dcast()函数
[python] view plain

#长转宽——dcast
dcast(
data=mydata1,
name+address~Year
#左侧是要保留的字段,右侧是要分割的分类变量,列数等于表达式
#右侧分类变量的类别个数
)

[python] view plain

> #长转宽——dcast
> dcast(
+ data=mydata1,
+ name+address~Year
+ #左侧是要保留的字段,右侧是要分割的分类变量,列数等于表达式
+ #右侧分类变量的类别个数
+ )
Using sale as value column: use value.var to override.
name address sale2014 sale2015 sale2016 sale2017
1 store1 普陀区 3000 3020 5150 4450
2 store2 黄浦区 2500 2800 3600 4100
3 store3 徐汇区 2100 3900 2700 4000
4 store4 浦东新区 1000 2000 2500 3200
dcast()函数的使用规则需要琢磨下才能理解,大家好好看看注释部分,再来看看spread()
[python] view plain

#长转宽——spread
tidyr::spread(
data=mydata1,
key=Year,
value=sale
)

[python] view plain

> #长转宽——spread
> tidyr::spread(
+ data=mydata1,
+ key=Year,
+ value=sale
+ )
name address sale2014 sale2015 sale2016 sale2017
1 store1 普陀区 3000 3020 5150 4450
2 store2 黄浦区 2500 2800 3600 4100
3 store3 徐汇区 2100 3900 2700 4000
4 store4 浦东新区 1000 2000 2500 3200
直接调用tidyr::spread,需要指定关键字段key和对应的值value。
但是从理解上来看,我个人更喜欢tidyr包的函数,使用很清晰,大家可以根据实际情况自行选择,好啦,今天的分享结束,下次再见!

⑷ r语言中怎么给数据集中变量重命名

您好,这个语句就可以: scale(data, center=T,scale=T),由于默认值均为T,简写成scale(data)即可标准化,data就是你导入的数据集的名称

⑸ R语言怎么修改其中某一个变量的显示方式

你建立一个映射,把代号映射成你想要的时间格式。

⑹ 刚学习R语言,问一下怎么编呢

安装完毕R语言,新建属于自己的R变成文件夹,然后 File ->Change Dir..,设置成自己的工作文件,自己工作空间将都会产生在这个文件夹下。2 /5 然后Files - > New Script,打开新的脚本编辑,在这里键入自己代码,编辑。在...

⑺ R语言系列8 | 变量类型7-矩阵的创建修改和索引

矩阵是可以看作一种特殊的向量的,它比向量多了两个附加属性,行数和列数,因此让它的复杂程度获得了提高。

向量作为R中的一种非常基础的数据类型,大家通过过去的学习一定已经彻底的掌握了。但是,这个世界上的数据是复杂多变的,我们只使用向量是无法表示更加复杂的数据情况。

我们在线性代数课上学过一种数学概念,矩阵。这个概念在为了统计学家开发的R语言中同样适用,并且只需要在基础环境中,我们可以具有很多对矩阵的操作方法。

( 由于R其实处理数据框较多,矩阵并不会讲很多的东西,如果非要使用矩阵,我其实还是更推荐去隔壁Python学习np和scipy )

任何数据类型学习的开始都是如何得到它,也就是如何创建它。矩阵也不例外,我们首要的 创建方式就是直接使用matrix函数进行创建 。而且其实说是创建矩阵,我们其实是在把一个向量转化为矩阵,

上面就是最基本的创建矩阵的方法了。我们 需要给matrix一个向量 (其实矩阵也可以,不过就会让你产生一些奇奇怪怪的误导,后面讲解了矩阵转向量的时候你就明白了),这个向量的内容就会成为创建的矩阵的内容。

然后跟着需要 指定你想创建的行数或者列数 ,这两个只需要指定其一即可,R会给我们计算另一个数字是几的,这样,我们就创建好了一个矩阵。

但是我们可以发现一个问题,我们创 建的矩阵是竖着一排排放的,这个叫做,****列优先原则 ,我们也可以通过指定参数 byrow,来让矩阵变成行优先

这就是行优先矩阵了,存储的内容都是一样的,就是行列优先顺序不同。

到这里你可能就会问了,R是不是只能创建方阵呢,普通的矩阵能不能创建呢?那当然可以了

我本人是习惯列优先进行存储的,所以我一般不指定byrow参数。

任何一种数据类型,我们对它最优先的操作学习,都是索引操作。任何一种结构的数据,我们存储它的目的都是为了使用,所以学习如果取到它的值,是非常重要的事情。

对矩阵的基本索引方式和向量非常相似,如果不了解向量的直接索引,布尔索引和连续索引,请看

由于有了上面的基础,所以我们先索引点简单的,然后做两个不一样的案例。矩阵和向量最大的区别再与矩阵具有两个维度,索引的时候需要两个位置

这里停一下,我们取第一行的所有列就已经是不同了,要注意, 当我们想取某一行的所有列,或者某列的所有行,或者当你想取所有的时候,把位置空出来 ,R就会自动给你取到所有。

说完了上面的,下面就都非常简单了

大家尤其要注意最后一种,取前两行和后两列的操作,很多时候这是非常有用的步骤,会减少你使用循环,提高程序的运行速度。

讲解完了索引,我们来讲一下如何矩阵的内容以及删除矩阵的行列。

其实修改特定位置的值非常简单,我们都已经找到了,修改就是一瞬间的事情,

除了单个值的修改,我们 还可以对索引到的行和列进行修改 ,一般来说,我们会直接把要修改的结果放进向量中,然后进行修改,但是如果修改的值不够长,也是可以操作的,如下

如果你对上面的内容表示有些困惑,那么你应该回忆一下,

这里有着你需要了解的一切。

最后讲解如何删除矩阵的行列,这里的操作也和向量是一样的,具体请回顾

本文的全部内容就到此结束了,这篇文章讲解了 最最基本的矩阵创建方法,以及对矩阵进行索引的操作,加上修改矩阵元素和删除矩阵的列等等 ,这些都是使用矩阵的基础知识,需要彻底掌握,才能在矩阵的使用中得心应手。

下一篇文章将会介绍矩阵维度,矩阵转化为向量以及矩阵的各种运算,矩阵的转置等内容。

⑻ R语言数据结构-向量

R语言数据结构主要有以下四种:

向量:一串相同类型的数据,不限于数字,字符,逻辑都可以,单独拿出来的一列。什么是看做一个整体,一个向量里有若干个数据,它们组成一个整体之后,可以拥有一个共同的名字。

以下主要讲向量:

向量就是一串数据,串联在一起,组成一个整体,向量由元素组成。

很长的向量要么从数据框提取一列,或是有规律地生成,如连续的数据:

paste0函数连接两个向量,逗号 , 前后各有一个向量,如字符型和数值型向量。

paste0和paste的区别是:

paste0函数 把两个向量的元素一一对应进行 无缝 连接,而 paste函数 把两个向量的元素一一对应进行 空格 连接。paste函数有默认值为空格,在空格处把空格去掉sep=""引号里把默认的空格去掉,即什么没有,就变成无缝连接,也可以用其它的符号连接sep="/",sep="_"等。

数值型、字符型、逻辑型:只要有字符型在,用c()生成向量为字符型。只有逻辑型和数值型,用c()生成向量为数值型。

c()函数生成向量时,要求为生成同一种数据类型

注意的地方:

变量名 :c()为生成向量函数,一般除字母c外,取单个字母或是单词及缩写,组成变量名的字母之间不要有空格,不能以数字为变量名或是以数字开头,变量名不能是中文名,特殊符号等。

<- 与c()函数之间没有空格。

<- 的快捷键输入:

mac电脑: option 和 - ;

windows电脑: Alt 和 -

= 在任何情况下可替代 <- ,但是 = 除了赋值,还有其它用法,比如函数里参数用法。 <- 不能在任意情况下代替 = 。

强大的计算是体现在批量计算上,先把一些数据组成一个整体,

还是以向量x为单位进行

其中五个重要函数,一定要掌握。

能用函数代替的东西,坚决不用手和眼睛去数,比如length()统计向量元素个数。

结论:unique(x)与x[!plicated(x)]函数相同

用identical()可以判断两个函数是否相同(数据结构与数据类型是否完全相同)

重点和难点:

x==y :x和对应位置的y相等吗?(x和y里的元素,按顺序一一对应比较,讲究位置对应,两者里第一个元素相同就返TRUE,比较完两个向量的第一位置上的元素,接着比较两个向量第二个位置元素...到两个向量最后)。

x和y不一样长:理解“循环补齐”

结论: 如果x与y的向量元素长度不相等,以长度向量说了算,不是由在==前的向量决定。

x%in%y :x的每个元素在y中存在吗?(x的元素挨个到y里和所有元素比较,在y里有的相同的返回TRUE,不讲究位置,有就是TRUE,没有为FALSE)。比如y向量加了一个元素2,返回还是9个逻辑值,返回的逻辑值是与x一一对应,和y没有关系。

加减乘除,两个向量直接可以进行,等位运算。前提是两个向量必须等长,即元素个数一样。

用paste0或是paste连接两个向量,两个向量的长度(元素个数)不一致,循环补齐。

intersect(x,y),union(x,y),setdiff(x,y),setdiff(y,x),x与y顺序颠倒(setdiff()与%in%有点儿相似)。

[] :取子集符号,将TRUE对应的值挑选出来,FALSE丢弃.

例:在13个数中,取出大于7的数,首先把13个数值组成一个向量x,x>7返回是逻辑值。

取值子集的对象放在中括号的外面,取子集的逻辑值向量放在中括号里面。

单独运行中括号里的向量,中括号里各种条件的返回结果有共同的规律,是一个与x等长的逻辑值向量。

下标:代表在哪个位置上。

符号 : []

按照逻辑值: 中括号里是与x等长的逻辑值向量

按照位置: 中括号里是由x的下标组成的向量(支持反选)

思考:从13个彩色(绿,蓝,黄)球中,选出属于蓝色和绿色的:

使用x %in% y还是x ==y,用x %in% y,不是等位循环补齐运算,%in%比较灵活,可以在很多场景中使用,如3选2,50选2,50选20等。

13个球的颜色赋值给向量x,蓝色和绿色赋值给y。

x %in% y

x[x %in% y]

修改向量的元素,修改x里的第四个元素

注意:R于语言里所有的修改,都要赋值,没有赋值就是没有发生过

把随机函数生成的数永远为一组数据:用随机函数生成向量,后运行set.seed(10086)

x[match(y,x)] 和 x[order(x)]

排序,如何调整元素顺序

结论:sort(x)等于x[order(x)],背诵下来

两个向量没有做关联的操作,可以用order函数排序对应信息

向量匹配排序-match,match函数是连线用的

x[match(y,x)] 的以后用法:以y作为模版,给x调顺序。

match:谁在中括号外面,谁就在后面, x[match(y,x)] ,以y作为模板,用x作为原料去取子集,按照一个顺序取子集,取出来的子集和y一样。

需要背诵的两个用法: x[match(y,x)] 和 x[order(x)]

练习题:在以下x和y表格里如何将y的列名一对一替换为ID

切换Rproj的时候出现弹窗:是否将工作空间保存到 .Rdata ?

答案是:不保存,之前单独保存好脚本和图片,这里出现的提示是否临时保存,不需要保存。

.Rdata ?是什么:

以 . 开头的文件,通常用作配置,系统默认隐藏这类文件

.Rdata 是保存工作空间的默认文件

.History 是保存历史命令的默认文件

如果打开Rstudio特别慢,可能是因为 .Rdata 保存了很大的变量,可以找到 .Rdata 文件将其删除。

在Rproj右下角打开脚本时,编辑器脚本的中文注释出现乱码,解决如下:

以上内容是听 生信技能树 小洁老师的 R语言线上课 ,根据自己的理解记录下来,小洁老师授课非常细心,对不同水平的同学都照顾到,并且补充很多技巧以及注意事项。

之前学习过R语言,那时对向量认识不够深,也没有重视,数据框的列单独拿出来就是一个向量。认真听小洁老师的讲解以及最近跑几个GEO数据集发现学会对向量的熟练操作以及熟练一些重要的函数,在实战过程中会顺利些。

⑼ r语言如何把数据框内的数值型数据转变成日期型数据

有数据集a,变量x,将变量x从数值型变为日期型,其代码如下:

a$x=as.Date(a$x)

⑽ r语言中的data.entry中的数据怎么修改

可以控制数字的小数位数,最多22位。

要控制某个变量的位数,可以format(round(1.20, 2), nsmall = 2),nsmall是显示的小数位数。
数字换做变量应该没有问题。