1. 如何提高數據分析的效率
一、明晰剖析的意圖
數據剖析的數據源往往龐大且無規矩,這個時分就需要明晰數據剖析的意圖。需要經過數據剖析展現什麼樣的成果。數據需求直接源於最終的剖析結果,如果你現已全面地規劃了要做哪些剖析、產生什麼結果,那麼你將知道數據需求是什麼。
二、剖析思路系統化,邏輯話
在進行數據剖析時,能夠借鑒管理學營銷學等理論知識,打開剖析思路,將數據剖析形成系統化,邏輯化的剖析模式。
三、掌握有效的剖析辦法
熟練掌握數據剖析的一般流程,掌握剖析辦法。理論與實踐相結合,培育數據剖析辦法與數據之前邏輯能力的把控,全面深刻的認識數據的價值,科學進行數據剖析工作。
四、選擇適宜的剖析東西
一個適宜的數據剖析東西是協助數據剖析的利器,但是面臨市場上很多的剖析東西,怎麼才能找到簡略易用的剖析東西似乎成為困擾業務人員的問題。大數據魔鏡作為一款調集數據剖析挖掘一體的可視化軟體,易用性極強,只需簡略拖拽即可完成數據剖析工作。
五、用圖表說話
簡略明晰的圖表能夠協助更好的展現數據結果,發現問題所在。在數據剖析的過程中,圖表能夠協助理清剖析思路,跳出剖析瓶頸。
六、多種可視化展現
跟著信息化的發展,數據井噴時代帶來海量數據,以往一般單調的展現方式現已無法滿足需求。一起,關於企業來說,明晰多元的數據能更好的開掘問題所在,為企業決議計劃帶來科學依據和參閱。大數據魔鏡有500多種可視化效果且烘托速度到達秒級。
七、會集精神有規則的歇息
關於相關業務人員或許大數據剖析師來說,高效專注的剖析時刻是有限的,或許會集在幾個小時內,因此在進行數據剖析工作時應該合理分配時刻,有規則的歇息,放鬆大腦。
關於如何提高數據分析的效率,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章能夠對你有所幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
2. 怎麼培養數據分析的能力
數據分析需要哪些思維/能力/知識呢?
比如,數據分析思維、結構化思維、公式化思維、學法體系的思維.......這些思維幫助你,即使碰到自己不熟悉的問題,也能從一定的角度切入分析並保持清晰的邏輯;
一定的業務理解能力,能理解業務背後的商業思路。只有理解問題,才能轉換成數據分析的問題,才知道如何設定分析目標並進行分析;
基礎理論知識:數理統計、模型原理、近期市場的調研等;
常規分析工具的使用:常用辦公軟體(Excel、PPT、思維導圖)、資料庫、統計分析工具、數據挖掘等;
數據報告和數據可視化的能力。數據分析得再好,如果不能以簡潔易懂的方式「表達」,成效也會大打折扣。
等等等,諸如此類的基本知識能力貯備......
那麼想要提升這些能力該做點什麼呢?下面具體來說說怎麼做能把這些基礎實力打好。
從分析理論和工具實踐著手
1、分析理論
分析理論包括:明確業務場景、確定分析目標、構建分析體系和梳理核心指標。
我們要做的就是,首先明確是什麼樣的業務場景,不同的業務,分析體系也隨之不同;然後,結合業務問題確定分析的目標,列出核心指標,再搜集整理所需要的數據。
推薦書籍:《數據化管理》、《決戰大數據 》
數據分析的幾個步驟:
(1)數據獲取
數據獲取往往看似簡單,但是它需要分析者對問題進行商業理解,即轉化成數據問題來解決,如,需要哪些數據,從哪些角度來分析等,在界定了這些問題後,再進行數據採集。
此環節,需要數據分析師具備結構化的邏輯思維。
推薦書籍:《金字塔原理》、麥肯錫三部曲:麥肯錫意識、工具、方法
推薦工具:思維導圖工具(Xmind網路腦圖等)
(2)數據處理
數據的處理需要掌握有效率的工具:
Excel及高端技能:
基本操作、函數公式、數據透視表、VBA程序開發。
我一般會先過一遍基礎,知道什麼是什麼,然後找幾個case練習。多逛逛excelhome論壇,平常多思考如何用excel來解決問題,善用插件,還有記得保存。
專業的報表工具:
(成規模的企業會用)日常做報表可以設計一個通用模板,只要會寫SQL就可上手。
相比excel做報表,這種工具開發的技術要求較低,能很快地開發常規報表、動態報表。
資料庫的使用:
熟練掌握SQL語言(很重要!!!),常見的有Oracle、SQL sever、My SQL等。
學習流行的hadoop之類的分布式資料庫來提升個人能力,對求職等都會有所幫助。
(3)分析數據
分析數據往往需要各類統計分析模型,如關聯規則、聚類、分類、預測模型等等。
因此,熟練掌握一些統計分析工具不可免:
lPSS系列:老牌的統計分析軟體,SPSS Statistics(偏統計功能、市場研究)、SPSS Modeler(偏數據挖掘),不用編程,易學。
SAS:經典挖掘軟體,需要編程。
R:開源軟體,新流行,對非結構化數據處理效率上更高,需編程。
各類BI工具:Tableau、PowerBI、FineBI,對於處理好的數據可作自由的可視化分析,圖表效果驚人。
推薦書籍:
《說菜鳥不會數據分析》系列,入門級書,初學者最適。
《數據挖掘與數據化運營實戰,思路、方法、技巧與應用》,內容很系統很全面。
《市場研究定量分析方法與應用》,簡明等編著,中國人民大學出版社。
(4)數據可視化呈現
很多數據分析工具已經涵蓋了數據可視化部分,這時就只需要把數據結果進行有效的呈現和演講匯報即可,可用word\PPT\H5等方式展現。
2、工具實踐
(1)對於入門小白,建議從Excel工具入手,這里以Excel為例:
學習Excel是一個循序漸進的過程:
基礎的:簡單的表格數據處理、列印、查詢、篩選、排序
函數和公式:常用函數、高級數據計算、數組公式、多維引用、function
可視化圖表:圖形圖示展示、高級圖表、圖表插件
數據透視表、VBA程序開發......
多逛逛excelhome論壇,平常多思考如何用excel來解決問題,學慣用各種插件,對能夠熟練使用Excel都有幫助。
其中,函數和數據透視表是兩個重點。
函數
製作數據模板必須掌握的excel函數:
日期函數:day,month,year,date,today,weekday,weeknum 日期函數是做分析模板的必備,可以用日期函數來控制數據的展示,查詢指定時間段的數據。
數學函數:proct,rand,randbetween,round,sum,sumif,sumifs,sumproct
統計函數:large,small,max,min,median,mode,rank,count,countif,countifs,average,averageif,averageifs 統計函數在數據分析中具有舉足輕重的作用,求平均值,最大值,中位數,眾位數都用得到。
查找和引用函數:choose,match,index,indirect,column,row,vlookup,hlookup,lookup,offset,getpivotdata 這幾個函數的作用不用多說,特別是vlookup,不會這個函數基本上復雜報表寸步難行。
文本函數:find,search,text,value,concatenate,left,right,mid,len 這幾個函數多半用在數據整理階段使用。
邏輯函數:and,or,false,true,if,iferror
(以上學會,基本能秒殺90%的辦公室白領!)
數據透視表
數據透視表的作用是把大量數據生成可交互的報表,它具有這樣一些重要功能:分類匯總、取平均、最大最小值、自動排序、自動篩選、自動分組;可分析佔比、同比、環比、定比、自定義公式等
現實中,取數或報表+EXCEL+PPT似乎還是主流形式。
工具上,無論是業務人員還是分析人員,都可以通過自動取數工具或者BI工具來製作報表,減少重復操作的時間。
其次,增加與業務人員的溝通,充分了解業務需求,當你的業務水平和他們差不多甚至更高時,自然而然知道他們一言兩語背後真實的需求是什麼了。
最後,站在更高角度上,報表的基本粒度就是指標,可梳理出企業的基本指標體系,從經營分析的角度去做報表,把報表的工作標准化,降低報表的冗餘,避免動不動就做一張報表。標准化包括指標分類,指標命名,業務口徑,技術口徑,實現方式等等。其實,最終目的是實現報表數據一致性,減少重復報表開發,降低系統開銷的戰略性舉措。
在業余時間,可以多補充數理統計知識,學習R、Python語言,學習常用的挖掘模型,往高級分析師路上發展!
一起加油鴨!
以上,就是今天的分享,數據分析能力聽起來很大很抽象,雖是軟實力但卻是行業的硬要求!量變引起質變,一步步來,才能做到觸類旁通,做起項目才會越來越順手。
3. 如何通過數據分析挖掘數據價值
【導讀】隨著科技的高速開展,數據在人們生活和決議計劃中所佔的比重越來越大,大數據的熱浪已然覆蓋了整個時代。大數據一直在活躍賦能很多工業,包括金融、醫療、農業、教育等。那麼,如何經過數據剖析發掘數據價值呢?今日就跟隨小編一起來了解下吧!
無論是在政務范疇仍是商業范疇,依賴於大數據技能的數據剖析總是為行業提供決議計劃支撐。因為大數據是從量變到質變的過程,加之數據被廣泛發掘,決議計劃根據的信息完整性越來越高,根據信息的理性決議計劃要高於以往拍腦袋的盲目決議計劃。
微觀層面中,大數據使得經濟決議計劃部分可以愈加敏銳的掌握經濟走向,並制定實施科學的經濟決議計劃;在微觀層面中,大數據可以進步企業經營決議計劃水平緩效率,推進立異,給企業以及所在的行業范疇帶來價值。
大數據不光要有數據,還要精分跟相應的行業相結合,產生幫助企業實際運營的產品,這樣數據才有價值。若想依託大數據把脈企業經營現狀,猜測行業開展趨勢,就需要不斷對數據源進行有用的挑選、清洗,做到精準剖析,不然得到的成果有可能是南轅北轍,於商業無益。
需要經過數據剖析,對數據來歷進行全方位挑選、清洗,同時打通各行業、各范疇的數據孤島,實現數據的整合、有用剖析,最大化數據剖析成果的精準度。經過對數據收集、傳輸、挑選、清洗、交融、剖析、計算及可視化使用等,高效整合線上線下數據,進行深層次、廣范圍的數據關聯剖析,解決企業全方位數據剖析問題,降低數據剖析本錢,助力企業深度發掘數據價值。
數據剖析的中心作業是人對數據目標的剖析、考慮和解讀,人腦所能承載的數據量是極端有限的。所以,無論是「傳統數據剖析」,仍是「大數據剖析」,均需要將原始數據依照剖析思路進行計算處理,得到概要性的計算成果供人剖析。兩者在這個過程中是相似的,區別僅僅原始數據量巨細所導致處理方式的不同。
以上就是小編今天給大家整理分享關於「如何通過數據分析挖掘數據價值?」的相關內容希望對大家有所幫助。小編認為要想在大數據行業有所建樹,需要考取部分含金量高的數據分析師證書,這樣更有核心競爭力與競爭資本。