當前位置:首頁 » 網路資訊 » 怎樣分析數據
擴展閱讀
騰訊軟體可以打游戲版 2025-07-01 01:22:28
怎樣辨別控釋尿素真假 2025-07-01 01:21:33

怎樣分析數據

發布時間: 2022-02-14 17:36:08

① 如何分析數據

根據你的描述,應該是分析變數之間的相關性,即年級等是否會對分數完成影響,spss中可以進行相關性分析,如果相關系數和顯著性在一定范圍,則說明有顯著相關性。

② excel中怎樣分析數據的相關性

方法/步驟

輸入我們要分析的數據,這里以分析促銷和營業額的關系為例進行。數據如下圖。

點擊工具---數據分析,如下圖。

在數據分析工具包中選擇相關系數,點擊確定,如下圖。

在相關系數設置對話框里首先設置輸入區域,這里要精確數據位置范圍,這里是個兩列的數據區域,選擇逐列,勾選標志位於第一列。如下圖。

設置輸出區域,選中輸出區域,按標號操作,選出輸出的單元格,如下圖。

6
點擊確定,結果是相關矩陣,我們可以看到其相關性為0.65349,相關性較大。如下圖

③ 怎麼分析數據

多讀書多讀書多讀書多讀書多讀書

④ 怎麼用spss分析數據

1、選取在理論上有一定關系的兩個變數,如用X,Y表示,數據輸入到SPSS中。

⑤ 分析數據怎麼分析

具體什麼要求呢?私信

⑥ 如何進行數據分析

很多人在進行數據分析的時候總是會有些迷惑,那就是不知道怎麼去進行數據分析或者數據分析到底要何處下手,其實這個問題的症結就是對數據分析沒有一個明確思路。在進行數據分析的時候,我們可以制定一個計劃,就能夠知道自己在各個階段該如何做好數據分析工作。簡單來說,可以總結為五個步驟,這五個步驟分別是確定分析目的和要分析的數據,分析源數據,處理源數據,得出結論,想出優化方案。做好了這些工作,才能夠做好數據分析。
首先說說確定分析目的和要分析的數據。我們肯定能意識到,數據分析中最關鍵的一個步驟,只有確定了步驟,才能夠知道自己分析收據的意義。確定數據的重要性在於選擇要分析的數據是否有邏輯性,如果沒有邏輯性,那麼數據分析出來的結果是錯誤的。並且,實際情況往往非常復雜,需要業務的實際情況去選定要分析哪些數據同樣可能決定分析結論。如果選錯了樣本,那分析結論就很大概率不正確。
第二說說觀察源數據。很多人拿到數據就開始處理、分析,其實這樣做並不妥,拿到數據的第一步應該是對數據做一個初步的判斷,如果經過一頓分析發現數據有很基礎的錯誤,會對自己以後的分析沒有自信的。異常數據是在這一步中要重點留意的,有一些數據有較為突出的波動。對於這樣的數據要探究它產生的原因,沒別的,還是要結合業務、結合自己的運營動作去想是否合理。
然後說說處理源數據。處理數據的話就是會使用數據分析的工具,一般來說Excel是夠用的。同時結合個人經驗說下,在用工具處理的時候,真的很可能出現操作錯誤,所以你要時刻提醒著點自己保持大腦運轉,要對數據的合理性不斷地質疑。由此可見數據分析的工具是需要大家多多學習的。
接著說說得出結論。得出結論這個步驟最容易用主觀視角去分析,帶著錯誤的思想方式去分析數據也能夠分析的出,所以數據分析一定要從客觀的角度進行分析,另外,同樣的數據不同的人分析,得出結論可能不同,差異就在於你們掌握、考慮的信息量可能不一樣,數據分析時盡可能讓自己敏感、細致,盡可能多地了解一切其他變數。
最後就是想出優化方案得出結論也不是數據最終的目的,需要大家不斷的發現問題,同時想出解決方案,得到反饋之後還要再發現問題,這才是正確的循環。
以上的內容就是對於數據分析工作的步驟了。數據分析工作的步驟就是確定分析目的和要分析的數據,分析源數據,處理源數據,得出結論,想出優化方案。這樣才能夠更好的進行數據分析工作,希望這篇文章能夠給大家帶來幫助。

⑦ 如何做數據分析

數據分析行業應用,一般數據來源:智能手機 感知裝置 物聯網 社群媒體等 雲計算存儲.cda官網有很多行業案例,比如
風能發電業務場景
風力發電機有一個葉片,時間長了就要換,否則不安全,過去這個葉片一般10年換一次,因為沒辦法知道具體產品的使用情況,只能根據以往葉片老化的情況來估算。但這家公司在葉片上裝了感測器,就能檢測每個葉片的具體使用情況了,風大的地方,葉片老化快,可能8年就要換,風力均勻的地方,有些葉片可能用15年,這樣就能節省資本更新的成本了。
而且,過去這家公司只生產設備,這些設備被賣到國外,具體安裝到什麼地方,他是不知道的,有了感測器,公司就能知道這些發電機被安裝到哪裡,這些地方的風力是大是小,一年四季哪天有風哪天有雨,這些數據都可以獲取。根據這些數據,就能知道哪些地區風力資源豐富,有重點地規劃未來市場。傳統的行業利用大數據,就能更好地實現市場預判和銷售提升,分分鍾實現逆襲。

⑧ 教你如何看數據分析

教你如何看數據分析

現在說分析數據,好像已經成了互聯網那個從業者的口頭禪,做產品的,運營的,市場的口口聲聲都在說數據怎麼樣,但是了解數據的真正含義,讀懂數據的人確實不多。之前跟一個之前在國內最大的數字商品交易平台的同事大哥在一起好好地聊了下,很有收獲。

對於數據,有一個共識就要會看數據,通過合理及透徹的分析來驅動產品,運營及市場策略的調整。但是這些知識看數據的中級階段,高級階段則是通過龐大的 多維度的數據分析,能夠預測到未來一個季度,半年甚至一年的業務走勢,當然預測可以有一定的偏差在裡面。還有的就是如果要進入到新業務的擴張上,那麼能夠 計算出未來的一定周期內需要有多大的資金投入量,人員投入量,市場及運營資源投入等達到一個什麼樣的規模,或者說反推,我想達到這樣的規模那麼需要多少投 入,多長時間。這個是最高階段,在一般情況下也許根本不會觸及到這個方面,少部分能夠做到中級階段基本上已經算是極限了。

互聯網的有諸多領域,每個領域關注的點都不一樣。我這邊先從熟悉的社區和電子商務兩個領域來說起。說到數據首先就是要去了解統計數據、分析數據的維度 是有哪些。個人認為一般是有用戶的維度,運營的維度,在社區來說還有內容的維度,在電子商務內部有運營的維度,我把推薦的單拎出來作為一個維度。

一 用戶的維度

從用戶的維度來看網站數據,其實就是通常所說的網站分析層面。這個維度主要來看用戶是通過什麼渠道來到網站,在網站用戶的行為是什麼,主要的目地為市 場人員提供推廣效果依據,以及幫助產品人員來分析指南各個網站上哪些頁面,哪些區域及模塊最能夠吸引用戶並及時進行策略調整。

網站分析的第一個數據點用戶來源渠道,用戶是從哪些渠道來到我們的網站上。是直接輸入網站地址,是從收藏夾中打開收藏鏈接,還是在搜索引擎上搜索過來 (那麼前二十的搜索關鍵詞都有哪些)。抑或是從微博、各個論壇等一些新媒體上點擊我們網站鏈接進來的。如果網站現階段也在做市場推廣,最好的就是每一個放 出去的鏈接都應該帶有獨立統計標識,這樣能夠清楚地看到不同的媒體上不同的廣告位置的流量怎麼樣。這樣市場人員可以通過這些數據來發現能夠為網站帶來穩定 流程的渠道,同時剔除掉效果不好的渠道。上面說的前二十的搜索關鍵詞也是做SEM確定關鍵詞的一個重要來源。

第二個數據點是用戶在網頁上行為,就是用戶通過各種不同的方式來到我們網站上後,常有的著陸頁面是哪些,這些頁面都有什麼特點需要好好分析一下。重點 關注用戶在頁面上的點擊行為,一般用戶會看幾屏,點擊哪些按鈕或者鏈接的概率大,在各個頁面上的停留時間是怎麼樣的。這些數據產品人員需要多關注,通過分 析用戶在各個網頁上的行為,能為我們做產品決策提供很大的依據。

第三個點在用戶訪問路徑上,主要是用戶從進入著陸頁上之後,陸續會到哪些頁面上,最後在哪些頁面上進行注冊登錄操作,在哪些頁面上跳出。由這些數據可 以清晰地勾勒出典型用戶的訪問路徑圖,在結合用戶來源渠道一起來分析,就能找到那些渠道上的用戶來到網站之後,訪問深度最高,轉化率從最高,這樣市場人員 也可以及時調整策略,對這些流量大,效果好的渠道加大推廣力度。

第四個點是注冊流程,一般來說很多網站的注冊流程並不是很短,都需要至少兩步,有的能到三四步,重點關注這個是因為注冊流程繁瑣,那麼你的推廣做到再 好網站各個模塊再易用,最後的轉化率照樣慘不忍睹。通過對這個流程的監測,可以看到有意願注冊的用戶到底在哪些環節流失了,是不是填寫信息太多,是不是發 送確認信息失敗等等。

最後總括起來就是,用戶來源渠道,UV,PV,停留時間,網頁點擊熱圖,一跳率,二跳率,訪問路徑,轉化率,市場推廣還應該關注你的CPM,CPC,以及用戶轉化成本等。

二 運營的維度

運營的維度就是用戶到了網站上後續行為,這個方面上社區和電子商務都有自己要去關注的點。

對於電子商務網站來說,用戶的維度的分析是分析用戶來源,運營的維度那就分析收入情況了。第一個數據點是每日的訂單數,這個是要看電商網站整體的銷售 情況也是最重要的一個數據指標。第二個就是客單價了,每筆訂單的金額,基本上訂單數和客單價的乘積差不多就是電商網站的整體銷量,與實際情況的差別不是很 大。 接下來就是要去看訂單支付成功率,很多人都有這樣的經歷在電子商務網站上,我們可能會把很多商品放在了購物車上,但是最後肯那個會刪掉購物車上某些商品, 或者說很多訂單最後並沒有被支付。電商的運營人員非常關注這個數據,如果說大量的未支付訂單,就需要去分析問題是出現哪裡。是注冊環節出了問題,還是說支 付環節出問題導致用戶支付失敗。

第四個數據點在退貨率,這個數據很重要,如果有大量的退貨對於網站來說損失非常大,同時還要分析退貨的原因是什麼。

第五個就是訂單交付周期,每個訂單從用戶支付成功到送達用戶簽收的時間,當然不同的區域,一線城市和二線城市的交付周期都有差別,但是這是考驗了電商整體的物流水平。

還有一個不為人注意的數據點就是投訴率,電子商務的用戶體驗是一個從線上到線下的全過程,重在服務某一個環節出現差錯都是致命。用戶投訴,往往就是在 某個環節出現了問題,留給用戶的印象非常之差。投訴率是電商整體服務水平的體驗,建立一個品牌很難,但是毀掉一個品牌則是非常的容易。

對於電商來說,最後一個重點數據則在用戶的重復購買率或者二次購買率,這個則是考驗了用戶的忠誠度。某個用戶第一次購買體驗非常好,對商品很滿意,那麼產生二次購買行為的概率就非常大。用戶多次購買的時間周期也是一個需要關注的數據點。

對於社區來說,需要關注的運營數據跟電商就有很多差別。以優質內容分享社區為例,每天的新注冊用戶數,登錄的老用戶數,人均PV數是社區整體數據。再 下來,社區每天產生的內容有多少,具體到文字,圖片,視頻等各種不同類型的內容各是多少,上前日的增長率是多少,相對於上周或者上月的增長率又是多少。同 時,么天新增關注,新增評論,轉發等等,這幾個數據,都是整個社區互動氛圍的整體表現。當然還要考慮流失情況,兩周未登錄,一月未登錄,兩月未登錄各佔到 社區總注冊人數的比率,比率越高對於社區產品及運營人員來說是非常危險的,更要好好地去關注。

當然對於社區來說,優質活躍用戶是營造社區氛圍的關鍵。那麼對於這些優質用戶來說,是需要重點來關注的。通過數據來分析,達到優質標準的用戶每周增長 多少,每個人本周發布的內容,各個類型的內容以及互動的數量,有多少人是處於瀕臨流失狀態。這些數據都會幫助運營人員調整自己的策略,例如看到很多用戶很 活躍,但是發布內容並不好,那麼應該怎麼去引導用戶;還有用戶瀕臨流失,那麼就需要考慮用什麼方法挽回這些用戶。

三 商品及內容的維度

這個維度其實也應該放在運營的維度裡面年,但是這一塊確實很多人都會忽略掉的,所以把這個維度也單拎出來。

在電商中,出了關注網站整體的用戶及銷售數據,還要關注單一品類及單一商品的數據。某一品類的銷量,平均每次購買量,金額,以及退換貨率。對於單一商 品也是同樣的數據分析,來看此商品在一定時期內的銷量,訂單數,金額,以及退換貨率。通過這樣的分析就能看到熱門品類和熱門商品的趨勢,後續的運營,營銷 或者促銷的選擇就很清晰了。

對於社區來說也是如此,我們要看社區整體的數據情況,但是社區中內容的重要性與人的重要性同等重要。對於優質內容分享的社區來說顯得尤為重要。除了內 容的文字,圖片,視頻的不同類型,還有內容本身的分類。包括是攝影,旅行,美食,時尚,動漫,電影等不同標簽的內容。在社區中內容的標簽是用戶自己添加 的。那麼需要關注的第一個數據點就是用戶自己添加的標簽有多少是本周內新增的。這樣就可以看到社區每周會要多少新鮮的內容產生。第二就是各個標簽下用戶的 發布內容量,每天是多少,每周是多少。最這樣就看出哪些標簽下的內容最活躍,後續相關的運營活動就可以從這裡面找到方向。第三個數據點就是各個標簽下用戶 的互動數,包括評論、轉發、收藏抑或喜歡等不同行為操作的數量,這個數據很清晰地顯示了用戶在不同標簽內容中的活躍程度,這是社區氛圍運營及活躍必不可少 的數據。

以上是小編為大家分享的關於教你如何看數據分析的相關內容,更多信息可以關注環球青藤分享更多干貨

⑨ 數據分析應該怎麼做

1.明確目的和思路


首先明白本次的目的,梳理分析思路,並搭建整體分析框架,把分析目的分解,化為若乾的點,清晰明了,即分析的目的,用戶什麼樣的,如何具體開展數據分析,需要從哪幾個角度進行分析,採用哪些分析指標(各類分析指標需合理搭配使用)。同時,確保分析框架的體系化和邏輯性。


2.數據收集


根據目的和需求,對數據分析的整體流程梳理,找到自己的數據源,進行數據分析,一般數據來源於四種方式:資料庫、第三方數據統計工具、專業的調研機構的統計年鑒或報告(如艾瑞資訊)、市場調查。


3.數據處理


數據收集就會有各種各樣的數據,有些是有效的有些是無用的,這時候我們就要根據目的,對數據進行處理,處理主要包括數據清洗、數據轉化、數據提取、數據計算等處理方法,將各種原始數據加工成為產品經理需要的直觀的可看數據。


4.數據分析


數據處理好之後,就要進行數據分析,數據分析是用適當的分析方法及工具,對處理過的數據進行分析,提取有價值的信息,形成有效結論的過程。


5.數據展現


一般情況下,數據是通過表格和圖形的方式來呈現的。常用的數據圖表包括餅圖、柱形圖、條形圖、折線圖、氣泡圖、散點圖、雷達圖等。進一步加工整理變成我們需要的圖形,如金字塔圖、矩陣圖、漏斗圖、帕雷托圖等。


6.報告撰寫


撰寫報告一定要圖文結合,清晰明了,框架一定要清楚,能夠讓閱讀者讀懂才行。結構清晰、主次分明可以使閱讀者正確理解報告內容;圖文並茂,可以令數據更加生動活潑,提高視覺沖擊力,有助於閱讀者更形象、直觀地看清楚問題和結論,從而產生思考。