當前位置:首頁 » 網路資訊 » 我是新手小白怎樣做數據
擴展閱讀
有啥軟體可以使用代金券 2025-05-26 06:05:07
吃飯多久可以運動視頻 2025-05-26 06:03:13

我是新手小白怎樣做數據

發布時間: 2023-06-12 07:26:46

❶ 如何學習數據分析

首先我說說這兩種方向共同需要的技術面,當然以下只是按照數據分析入門的標准來寫:

1. SQL(資料庫),我們都知道數據分析師每天都會處理海量的數據,這些數據來源於資料庫,那麼怎麼從資料庫取數據?如何建立兩表、三表之間的關系?怎麼取到自己想要的特定的數據?等等這些數據選擇問題就是你首要考慮的問題,而這些問題都是通過SQL解決的,所以SQL是數據分析的最基礎的技能,零基礎學習SQL可以閱讀這里:SQL教程_w3cschool

2. 統計學基礎,數據分析的前提要對數據有感知,數據如何收集?數據整體分布是怎樣的?如果有時間維度的話隨著時間的變化是怎樣的?數據的平均值是什麼?數據的最大值最小值指什麼?數據相關與回歸、時間序列分析和預測等等,這些在網易公開課上倒是有不錯的教程:哈里斯堡社區大學公開課:統計學入門_全24集_網易公開課
3.Python或者R的基礎,這一點是必備項也是加分項,在數據挖掘方向是必備項,語言相比較工具更加靈活也更加實用。至於學習資料:R語言我不太清楚,Python方向可以在廖雪峰廖老師的博客里看Python教程,面向零基礎。
再說說兩者有區別的技能樹:

1.數據挖掘向
我先打個前哨,想要在一兩個月內快速成為數據挖掘向的數據分析師基本不可能,做數據挖掘必須要底子深基礎牢,編程語言基礎、演算法、數據結構、統計學知識樣樣不能少,而這些不是你自習一兩個月就能完全掌握的。
所以想做數據挖掘方向的,一定要花時間把軟體工程專業學習的計算機基礎課程看完,這些課程包括:數據結構、演算法,可以在這里一探究竟:如何學習數據結構?
在此之後你可以動手用Python去嘗試實現數據挖掘的十八大演算法:數據挖掘18大演算法實現以及其他相關經典DM演算法
2.產品經理向
產品經理向需要你對業務感知能力強,對數據十分敏感,掌握常用的一些業務分析模型套路,企業經常招聘的崗位是:商業分析、數據運營、用戶研究、策略分析等等。這方面的學習書籍就很多,看得越多掌握的方法越多,我說幾本我看過的或者很多人推薦的書籍:《增長黑客》、《網站分析實戰》、《精益數據分析》、《深入淺出數據分析》、《啤酒與尿布》、《數據之魅》、《Storytelling with Data》

❷ 如何自學數據分析

很多人都覺得,自己是文科類出身,或者對數理專業不熟悉,會很難上手數據分析。其實不是這樣子的,學習數據分析,不同於程序員,它不會專門要求我們一定要掌握編程,只是理解熟悉就可以。個人的邏輯思維能力、個人興趣所在,以及自身的決心毅力,這些才是構成一個人學成與否的關鍵和最重要因素。
小編覺得最重要的一點就是,我們得清楚企業對數據分析師的基礎技能需求是什麼。這樣我們才能有的放矢。我大抵總結如下:

(1)SQL資料庫的基本操作,會基本的數據管理
(2)會用Excel/SQL做基本的數據分析和展示
(3)會用腳本語言進行數據分析,Python or R
(4)有獲取外部數據的能力,如爬蟲
(5)會基本的數據可視化技能,能撰寫數據報告
(6)熟悉常用的數據挖掘演算法:回歸分析、決策樹、隨機森林、支持向量機等
之後,怎麼安排自己的業余時間就看個人了。總體來說,先學基礎,再學理論,最後是工具。基本上,每一門語言的學習都是要按照這個順序來的。
1、學習數據分析基礎知識,包括概率論、數理統計。基礎這種東西還是要掌握好的啊,基礎都還沒扎實,知識大廈是很容易倒的哈。
2、你的目標行業的相關理論知識。比如金融類的,要學習證券、銀行、財務等各種知識,不然到了公司就一臉懵逼啦。
3、學習數據分析工具,軟體結合案列的實際應用,關於數據分析主流軟體有(從上手度從易到難):Excel,SPSS,stata,R,Python,SAS等。
4、學會怎樣操作這些軟體,然後是利用軟體從數據的清洗開始一步步進行處理,分析,最後輸出結果,檢驗及解讀數據。

❸ 資料庫該怎麼學習,純小白

相信很多資料庫入門的新手們在學習資料庫方面都存在困惑,本文列出了一個非常完整的資料庫學習路線,並對資料庫學習過程中的細節進行詳細指導。希望能夠成為大家學習資料庫過程中一份綱領性的教程。

本回答來自:資料庫怎麼學?資料庫學習零基礎入門指導_樹懶學堂

資料庫知識要點學習

  • 新手學習資料庫務必把握的知識要點:

  • 資料庫的安裝下載:了解資料庫的環境變數,文件目錄構造。

  • 資料庫網路伺服器的啟動,登陸與登出。

  • 資料庫常用命令及語法標准。

  • 資料庫基本數據類型與數據表的實際操作。比如,數據表的增刪、單表查尋、多表查詢等。

  • 資料庫運算符和函數,比如,日期函數,時間函數,信息函數,聚合函數,數據加密涵數,自定義函數等。

  • 資料庫存儲過程,存儲過程的調度。

  • 資料庫每個存儲引擎的特性。

  • 資料庫事務管理的定義和應用等。

  • 資料庫管理許可權和用戶管理等。

資料庫學習材料推薦:

1.《MySQL必知必會》

這書講的十分全,從基本要素,到查尋到插入新建表,用戶的管理方法,都是有實際的事例,特別適合沒有基礎的同學們來學習Mysql,總而言之這本書學習的方式 便是:

  • 掌握資料庫的基本概念

  • 按照示例進行練習

2.《SQL必知必會》

純新手必讀,這也是Amazon上最熱銷的SQL書籍的漢化版,寫的很輕快,定義十分清晰。這本書用於學習關系型資料庫也非常好,基本概念比大部頭的教材內容說得清晰得多。

網站推薦:

樹懶學堂_一站式數據知識學習平台

❹ 如何做數據分析

數據分析有:分類分析,矩陣分析,漏斗分析,相關分析,邏輯樹分析,趨勢分析,行為軌跡分析,等等。 我用HR的工作來舉例,說明上面這些分析要怎麼做,才能得出洞見。

01) 分類分析
比如分成不同部門、不同崗位層級、不同年齡段,來分析人才流失率。比如發現某個部門流失率特別高,那麼就可以去分析。

02) 矩陣分析
比如公司有價值觀和能力的考核,那麼可以把考核結果做出矩陣圖,能力強價值匹配的員工、能力強價值不匹配的員工、能力弱價值匹配的員工、能力弱價值不匹配的員工各佔多少比例,從而發現公司的人才健康度。

03) 漏斗分析
比如記錄招聘數據,投遞簡歷、通過初篩、通過一面、通過二面、通過終面、接下Offer、成功入職、通過試用期,這就是一個完整的招聘漏斗,從數據中,可以看到哪個環節還可以優化。

04) 相關分析
比如公司各個分店的人才流失率差異較大,那麼可以把各個分店的員工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、員工年齡、管理人員年齡等)要素進行相關性分析,找到最能夠挽留員工的關鍵因素。

05) 邏輯樹分析
比如近期發現員工的滿意度有所降低,那麼就進行拆解,滿意度跟薪酬、福利、職業發展、工作氛圍有關,然後薪酬分為基本薪資和獎金,這樣層層拆解,找出滿意度各個影響因素裡面的變化因素,從而得出洞見。

06) 趨勢分析
比如人才流失率過去12個月的變化趨勢。

07)行為軌跡分析
比如跟蹤一個銷售人員的行為軌跡,從入職、到開始產生業績、到業績快速增長、到疲憊期、到逐漸穩定。