當前位置:首頁 » 網路資訊 » 大數據怎樣解放人
擴展閱讀
一些文件夾可以刪嗎 2025-08-20 19:20:58

大數據怎樣解放人

發布時間: 2023-01-22 12:45:31

⑴ 大數據把人類帶進怎樣的新 解放

隨著 社會的 智能化,大數據華,生活網路化, 會讓人類的生活變得更安逸!
伴隨著 一項項 基於大數據的 人工智慧產品上線 人類額生活越來 越簡單。
當然也伴隨著 更多的失業!~!

⑵ 運用經濟生活知識,分析如何讓大數據造福人類。

大數據是依託現代信息技術的發展而出現的。
要造福人類,就是要將信息化帶動工業化,以工業化促進信息化,走新型工業化道路。這樣可以轉變經濟發展方式,優化產業結構,促進資源利用效率提高,打造環境友好型、資源節約型社會。

⑶ 大數據如何解放組織的創造力

大數據業務通過獲取更多具體的、結構化的數據,獲得內部及外部的非結構化的數據,獲得實時或延時性的數據,將預測性的分析融入關鍵業務過程中,利用對客戶的了解,驅動企業的盈利能力,比如傳統的零售業和B2B的中小型企業,在智能化的數據運營中獲得客戶和企業之間的價值和黏性,幫助客戶和企業在互動時做出正確的決策。

⑷ 「大數據」怎樣改變生活

「大數據」怎樣改變生活

大數據,現在越來越成為了一個很時髦的詞彙。有人把大數據形容為未來世界的石油,有人宣稱掌握大數據的人可以像上帝一樣俯瞰整個世界,美國政府甚至已經把對大數據的研究上升為國家戰略。日前,由中國科協舉辦的「科學家與媒體面對面——大數據離我們生活有多遠」活動中,有關專家為我們介紹了大數據對未來生活的影響。

我們生活在一個充滿「數據」的時代,這里的「數據」,並不僅僅指數字,理論上講,一切可以以文件形式儲存於計算機硬碟的東西,包括數字、文字、圖像、聲音、視頻等,均可稱為「數據」。我們打電話,使用微博、QQ、博客等社交工具,都是在不斷增加著社會總體數據量。

據權威預測,未來每隔18個月,整個世界的數據總量就會翻倍。IBM的研究稱,整個人類文明所獲得的全部數據中,有90%是過去兩年內產生的。

數據,除了它第一次被使用時提供的價值以外,那些積累下來的數據海洋並不是無用的廢物,它還有著無窮無盡的「剩餘價值」,關於這一點,人們已經有了越來越多的認識。事實上,大數據已經開始並將繼續影響我們的生活,下面我們不妨試舉幾例。

精準廣告投放已很普遍

很多女性可能有這樣的經歷,使用某瀏覽器在淘寶、京東等購物網站上購買過一本關於懷孕的書籍後,在之後十個月左右的時間里,你的瀏覽器兩側的廣告欄里不斷出現懷孕所需要的東西,如營養食品、對胎兒無影響的孕婦用葯、胎心監測儀、體溫計、血壓計等產品廣告,登錄原來的購物網站,也會在首頁向你推薦這類產品。而且,在十個月之後,你會發現,以上這些廣告開始變成嬰兒用品了。

你以前可能對瀏覽器廣告非常討厭,但對這類廣告,你卻欣然接受,因為它推薦的產品正是你所需要的。這實際上就是大數據應用的一個簡單案例。你的瀏覽經歷已經被瀏覽器和電商所記錄,通過對用戶瀏覽記錄進行大數據分析,就可以推測出你目前是一種什麼狀態,今後又將經歷哪些狀態,於是,專為你定製的廣告就在你需要的時候出現在你的眼前。

大數據最本質的應用就在於預測,即從海量數據中分析出一定的特徵,進而預測未來可能會發生什麼。實際上,上述例子僅僅是大數據應用的最初級階段。因為它所涉及的數據的范圍並不廣泛,其分析原理也非常簡單。而如前言所述,大數據有數據量大、數據多樣性等特徵,實際是將各個維度的數據進行綜合分析進而進行一定的預測。當不同的數據流被整合到大型資料庫中後,預測的廣度和精度都會大規模的提高。例如,當一個資料庫從不同的數據來源獲得了你使用手機的時間和地點、信用卡購物、銀行卡電子收費系統、使用QQ等聊天工具的對象、你的QQ好友關系圖、你在新浪微博、騰訊微博的收聽及被收聽關系圖譜、你交納的水、電、燃氣費等各方面的數據,數據分析師就能通過匹配獲得你生活的不同側面。通過大數據,數據分析可以發現各種各樣的關聯。通過分析,可以發現你多方面的需求,並不僅僅是諸如懷孕書籍和尿不濕之間的簡單關聯了。在數據足夠「大」的情況下,你生活中幾乎所有的需求都可能會被預測出來。例如,從數據分析出你可能會約會,於是會向你推薦衣服;從數據推測出你會出去旅遊,於是向你推薦相關裝備及旅行方式等。

醫療衛生體系會更加精密

通過分析大量用戶的搜索記錄,比如「咳嗽」、「發燒」等特定詞條,谷歌公司能准確預測美國冬季流感傳播趨勢。和官方機構相比,谷歌能提前一兩周預測流感爆發,預測結果與官方數據的相關性高達97%。2009年,在甲型H1N1流感爆發的幾周前,谷歌的工程師們公開發表了一篇論文,不僅預測流感即將爆發,並且其預測還精確到美國特定的地區和州。這讓人們感到十分震驚。准確預測流感疫情,說起來並不復雜,谷歌一直致力於對用戶檢索數據的分析。用戶求醫問葯等搜索數據可謂海量,把這些數據再拿來與美國疾控中心往年記錄的實際流感病例信息相比對,就幫助谷歌作出了准確預測。

在日本也有相似的應用,日本國內有一個網站,你只要打開這個網站用自己的社交網站賬號登錄,就可以在短時間內通過數萬條社交網站記錄找出可能感冒的人,並通過過去的感冒情況和今日的感冒情況進行分析,另外該程序還會結合氣溫和濕度的變化來預測將來感冒的流行情況,並製作一個「易感冒日歷」。目前,此類服務正在日本陸續展開。

對個體而言,大數據可以為個人提供個性化的醫療服務。過去我們去看病,醫生只能對我們的當下身體情況做出判斷,而在大數據的幫助下,將來的診療可以對一個患者的累計歷史數據進行分析,並結合遺傳變異、對特定疾病的易感性和對特殊葯物的反應等關系,實現個性化的醫療。還可以在患者發生疾病症狀前,提供早期的檢測和診斷。早期發現和治療可以顯著降低肺癌給衛生系統造成的負擔,因為早期的手術費用是後期治療費用的一半。

個性化教育可能真正實現

在傳統教育模式下,分數就是一切,一個班上幾十個人,使用同樣的教材,同一個老師上課,課後布置同樣的作業。然而,學生是千差萬別的,在這個模式下,不可能真正做到「因材施教」。

舉例來說,一個學生考試得了88分,這個分數僅僅是一個數字,它能代表什麼呢?88分背後是家庭背景、努力程度、學習態度、智力水平等,把它們和88分聯系在一起,這就成了「數據」。大數據因其數據來源的廣度,有能力去關注每一個個體學生的微觀表現——他在什麼時候開始看書,在什麼樣的講課方式下效果最好,在什麼時候學習什麼科目效果最好,在不同類型的題目上停留多久等等。這些數據對其他個體都沒有意義,是高度個性化表現特徵的體現。同時,這些數據的產生完全是過程性的:課堂的過程,作業的過程,師生或同學的互動過程……而最有價值的是,這些數據完全是在學生不自知的情況下被觀察、收集的,只需要一定的觀測技術與設備的輔助,而不影響學生任何的日常學習與生活,因此它的採集也非常的自然、真實。

在大數據的支持下,教育將呈現另外的特徵:彈性學制、個性化輔導、社區和家庭學習、每個人的成功……大數據支撐下的教育,就是要根據每一個人的特點,解放每一個人本來就有的學習能力和天分。

個人隱私保護 一道能邁過的坎

看了前面這些,讀者可能要擔心了,大數據包含有包羅萬象的數據,其中不少數據涉及個人的職位、年齡、身體狀況、消費水平、旅行習慣等隱私,那麼,在大數據時代,個人隱私能夠得到保護嗎?答案是,只要國家相關部門實時推進隱私保護,企業主動落實隱私保護責任,大數據產業在飛速發展的同時並不會對民眾隱私產生威脅。

在大數據產業中,有兩個基本的作法,一是符號化。符號化是指識別用戶的時候,識別的僅僅是一個「符號」,這個符號與真實信息並不相關,系統通過一定的演算法能夠知道多次登錄的是同一個用戶,但並沒有辦法反推出這個人是誰,因此,電話、住址等信息都沒法與本人關聯起來。二是用戶特徵。用戶特徵意味著在大數據時代企業感興趣的往往是這個用戶的特徵,而不是家庭地址、電話號碼等真正敏感的信息。例如,系統需要了解本科以上學歷、月收入10000元以上、已婚等這樣一個群體,只需要找出符合這些特徵的人的特性,並不關心這個人是誰。這樣也不會造成隱私的泄露。

當然,這些原則性問題有賴於政府推動、企業自律。但我們相信,為大數據產業的健康發展,相關部門,相關企業一定會高度重視這一問題。

以上是小編為大家分享的關於「大數據」怎樣改變生活的相關內容,更多信息可以關注環球青藤分享更多干貨

⑸ 大數據都體現在哪些方面

在過去幾年,大數據的建設主要集中在物聯網、雲計算、移動互聯網等基礎領域,一些大數據起步較早、積累較深的行業領域,開始基於大數據的基礎建設,開啟了行業數據應用與價值挖掘之路。從數據的抽取、清洗等預處理,到數據存儲及管理,再到數據分析挖掘,以及最終的可視化呈現。行業用戶開始把注意力轉向大數據真正的價值點——發現規律,提升決策效率與能力。這一年,他們在收集數據上花費的時間很少,而在實際分析數據並回答各種問題上的時間則越來越多。
目前進入大數據應用相對較成熟的領域主要在公安、交通、電力、園區管理、網路安全、航天等。大數據價值被挖掘,幫助各行業從業務管理、事前預警、事中指揮調度、事後分析研判等多個方面提升智能化決策能力。
公安領域的大數據應用,可以實現從警綜、警力、警情、人口、卡口/車輛、重點場所、攝像頭管理等全方位進行公安日常監測與協調管理;實現突發事件下的可視化接處警、警情查詢監控、轄區定位、應急指揮調度管理,滿足公安行業平急結合的應用需求。
從而全面提升公安機關智能化決策能力,提升警務資源利用和服務價值,為預防打擊違法犯罪、維護社會穩定提供有力支持。
交通領域的大數據應用,可以實現從公交車輛、司乘人員、運行線路、站點場站管理、乘客統計等多個維度進行日常路網運行監測與協調管理;支持突發事件下的值班接警、信息處理發布、應急指揮調度管理,發揮交通資源最大效益
電力領域的大數據應用,可以實現用戶分布、節點負荷、電網拓撲、電能質量、竊電嫌疑、安全防禦、能源消耗等智能電網多個環節進行日常運行監測與協調管理;滿足常態下電網信息的實時監測監管、應急態下協同處置指揮調度的需要。全面提高電力行業管理的及時性和准確性,更好地實現電網安全、可靠、經濟、高效運行。
園區管理的大數據應用,可以實現從園區建設規劃、管網運行、能耗監測、園區交通、安防管理、園區資源管理等多個維度進行日常運行監測與協調管理;從而全面加強園區創新、服務和管理能力,促進園區產業升級、提升園區企業競爭力。
網路安全的大數據應用,能夠實現對網路中的安全設備、網路設備、應用系統、操作系統等整體環境進行安全狀態監測,幫助用戶快速掌握網路狀況,識別網路異常、入侵,把握網路安全事件發展趨勢,全方位感知網路安全態勢。
航天是大數據應用最早也最成熟,取得成果最多的領域,航天要對尺度遠比地球大無數倍的廣闊空間進行探索,其總量更多,要求更高。因此,航天大數據不僅具有一般大數據的特點,更要求高可靠性和高價值。能夠實現對航天測發、測控設備控制;航天指揮作戰體系模擬推演、作戰評估;航天作戰指揮顯示控制航天器數據分析、狀態監控。

⑹ 如何運用大數據思維做好輿論引導

優化大數據技術支撐平台
加強與科研院所的合作,進一步研發大數據深度挖掘、存儲、計算和分析的關鍵技術,研發補充多種類型的業務功能模塊,不斷優化網路輿情信息處理技術平台支撐功能,加大輿情計算分析能力,將其打造為絡輿情大數據處理中央平台。
引進培養大數據技術人才
系統梳理網路輿情工作所需技術人才目錄,通過招考、聘用等方式,引進亟需數據挖掘、分析人才;通過委託高校培養等方式,培養已有專業技術人才;通過購買服務的方式,短期租賃高精尖大數據技術人才為我所用,不斷健全大數據技術人才體系。
研究制定輿情量化指標體系
組織專門課題組,與輿情專業機構合作,以歷史積累的輿情案例為素材,系統梳理網路輿論引導業務流程,建立可供量化的輿情指標體系,將網民情緒變化、社會關系、意見傾向、意見影響力等定性內容納入指標體系,並不斷完善。細分輿情類別,有針對性地構建輿情預測模型,按照量化指標體系標准全面計算分析輿情內容,有效預測突發網路輿情發生。
拓寬大數據挖掘獲取渠道
在加快研發數據挖掘技術同時,加大與人民網、新浪、騰訊、網路、鳳凰網等主要網站的合作,通過合作模式獲取後台關鍵數據。健全網路輿情信息歷史數據沉澱機制,將重要關鍵的網路輿情數據歸類存儲,運用大數據技術進行多次價值開發。建立健全全市大輿情工作機制,制定輿情大數據工作體系,完善市級部門、區(市)縣、媒體、社會舉報、民意調查、社保、社會信用、工商等輿情數據獲取方式,拓寬大數據獲取的渠道。
再造輿論引導業務流程
按照大數據業務需求,再造網路輿情監測、引導、處置等輿論引導業務流程,以全程化、全員化、全媒化和規范化的思路,實現網路輿情預測和網路輿論引導前置。
面對越來越繁重的網路輿論引導任務,仍然固守以往傳統工作方式將愈來愈力不從心。但完全寄希望於大數據技術來實現對網上輿論的管控,解放人的辛苦勞動無疑將是天方夜譚。總而言之,大數據技術是人發明的,它只是個手段,永遠不能離不開人的把控和分析。

⑺ 大數據究竟給人們帶來了哪些便利

大數據時代至少給我們的生活帶來了以下六點便利與好處:

1、節約時間,更有效率

2、大數據讓人們更容易借到錢 讓老賴無處遁形。

3、大數據讓人更加聰明更智慧。

4、大數據思維可以幫你省錢。

5、大數據讓工作可以量化,更加公平。

6、大數據思維可以助你發現隱形需求

大數據時代的到來,帶來的變化和變革無法量化,只能從大的方面去看了。一個時代會因為一個概念的提出而顛覆,大數據時代,等待顛覆的,還有很多。大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。同樣,設備管理也將面對著這樣的挑戰和機遇,我們會在設備管理工作中通過從信息到數據再由數據到有用信息的分析而獲得知識、商機和為社會服務的更高層次的能力。

⑻ 什麼是大數據有什麼意義

"大數據"是一個體量特別大,數據類別特別大的數據集,並且這樣的數據集無法用傳統資料庫工具對其內容進行抓取、管理和處理。 "大數據"首先是指數據體量(volumes)?大,指代大型數據集,一般在10TB?規模左右,但在實際應用中,很多企業用戶把多個數據集放在一起,已經形成了PB級的數據量;其次是指數據類別(variety)大,數據來自多種數據源,數據種類和格式日漸豐富,已沖破了以前所限定的結構化數據范疇,囊括了半結構化和非結構化數據。接著是數據處理速度(Velocity)快,在數據量非常龐大的情況下,也能夠做到數據的實時處理。最後一個特點是指數據真實性(Veracity)高,隨著社交數據、企業內容、交易與應用數據等新數據源的興趣,傳統數據源的局限被打破,企業愈發需要有效的信息之力以確保其真實性及安全性。
數據採集:ETL工具負責將分布的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層後進行清洗、轉換、集成,最後載入到數據倉庫或數據集市中,成為聯機分析處理、數據挖掘的基礎。
數據存取:關系資料庫、NOSQL、SQL等。
基礎架構:雲存儲、分布式文件存儲等。
數據處理:自然語言處理(NLP,NaturalLanguageProcessing)是研究人與計算機交互的語言問題的一門學科。處理自然語言的關鍵是要讓計算機"理解"自然語言,所以自然語言處理又叫做自然語言理解(NLU,NaturalLanguage Understanding),也稱為計算語言學(Computational Linguistics。一方面它是語言信息處理的一個分支,另一方面它是人工智慧(AI, Artificial Intelligence)的核心課題之一。
統計分析:假設檢驗、顯著性檢驗、差異分析、相關分析、T檢驗、方差分析、卡方分析、偏相關分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預測與殘差分析、嶺回歸、logistic回歸分析、曲線估計、因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應分析、多元對應分析(最優尺度分析)、bootstrap技術等等。
數據挖掘:分類 (Classification)、估計(Estimation)、預測(Prediction)、相關性分組或關聯規則(Affinity grouping or association rules)、聚類(Clustering)、描述和可視化、Description and Visualization)、復雜數據類型挖掘(Text, Web ,圖形圖像,視頻,音頻等)
模型預測:預測模型、機器學習、建模模擬。
結果呈現:雲計算、標簽雲、關系圖等。
要理解大數據這一概念,首先要從"大"入手,"大"是指數據規模,大數據一般指在10TB(1TB=1024GB)規模以上的數據量。大數據同過去的海量數據有所區別,其基本特徵可以用4個V來總結(Vol-ume、Variety、Value和Veloc-ity),即體量大、多樣性、價值密度低、速度快。

第一,數據體量巨大。從TB級別,躍升到PB級別。
第二,數據類型繁多,如前文提到的網路日誌、視頻、圖片、地理位置信息,等等。
第三,價值密度低。以視頻為例,連續不間斷監控過程中,可能有用的數據僅僅有一兩秒。
第四,處理速度快。1秒定律。最後這一點也是和傳統的數據挖掘技術有著本質的不同。物聯網、雲計算、移動互聯網、車聯網、手機、平板電腦、PC以及遍布地球各個角落的各種各樣的感測器,無一不是數據來源或者承載的方式。

大數據技術是指從各種各樣類型的巨量數據中,快速獲得有價值信息的技術。解決大數據問題的核心是大數據技術。目前所說的"大數據"不僅指數據本身的規模,也包括採集數據的工具、平台和數據分析系統。大數據研發目的是發展大數據技術並將其應用到相關領域,通過解決巨量數據處理問題促進其突破性發展。因此,大數據時代帶來的挑戰不僅體現在如何處理巨量 收起

⑼ 人工智慧主要應用在哪些方面,到底會不會「解放」人類

自從谷歌的人工智慧機器人阿法狗戰勝了李世石和二代「阿法狗」Master在騰訊圍棋中橫掃中國棋手,實現了60連勝的局面,逐漸人工智慧這樣技術漸漸的走進人類的視野。到底人工智慧是什麼主要包括哪些核心的技術,這些智能的機器會不會「解放」人類?今天小禪逐步給大家揭曉。

人類不必憂慮,但是也不能懈怠了。畢竟重復的勞動未來將部分會被機器人所取代。人類還能做什麼?是啊,這是一個值得人類思考的問題。人需要做創作、創造性勞動,需要靈感的勞動。畢竟學習已經有的知識和數據,計算機比人類強很多。這也啟示人類,未來的教育方向應該是引導學生解決問題、創造創新,不能僅僅的盯在已經寫在書本上的「歷史知識」。畢竟這些知識已經是事實,無需重復性的驗證學習,僅僅在需要用的時候知道如何應用才是王道。本文僅僅代表個人觀點,如有疑問,歡迎評論。

⑽ 大數據風控是什麼

大數據風控指的就是大數據風險控制,是指通過運用大數據構建模型的方法進行風險控制和風險提示。通過採集大量企業或個人的各項指標進行數據建模的大數據風控更為科學有效。