㈠ 如何利用大數據做金融風控
大數據能夠進行數據變現的商業模式目前就是兩個,一個是精準營銷,典型的場景是商品推薦和精準廣告投放,另外一個是大數據風控,典型的場景是互聯網金融的大數據風控。金融的本質是風險管理,風控是所有金融業務的核心。典型的金融借貸業務例如抵押貸款、消費貸款、P2P、供應鏈金融、以及票據融資都需要數據風控識別欺詐用戶及評估用戶信用等級。傳統金融的風控主要利用了信用屬性強大的金融數據,一般採用20個緯度左右的數據,利用評分來識別客戶的還款能力和還款意願。信用相關程度強的數據 緯度為十個左右,包含年齡、職業、收入、學歷、工作單位、借貸情況、房產,汽車、單位、還貸記錄等,金融企業參考用戶提交的數據進行打分,最後得到申請人 的信用評分,依據評分來決定是否貸款以及貸款額度。其他同信用相關的數據還有區域、產品、理財方式、行業、繳款方式、繳款記錄、金額、時間、頻率等。普惠在線互聯網金融的大數據風控並不是完全改變傳統風控,實際是豐富傳統風控的數據緯度。互聯網風控中,首先還是利用信用屬性強的金融數據,判斷借款人的還 款能力和還款意願,然後在利用信用屬性較弱的行為數據進行補充,一般是利用數據的關聯分析來判斷借款人的信用情況,藉助數據模型來揭示某些行為特徵和信用 風險之間的關系。互聯網金融公司利用大數據進行風控時,都是利用多維度數據來識別借款人風險。同信用相關的數據越多地被用於借款人風險評估,借款人的信用風險就被揭示的更充分,信用評分就會更加客觀,接近借款人實際風險。常用的互聯網金融大數據風控方式有以下幾種:驗證借款人身份驗證借款人身份的五因素認證是姓名、手機號、身份證號、銀行卡號、家庭地址。企業可以藉助國政通的數據來驗證姓名、身份證號,藉助銀聯數據來驗證銀行卡號和姓名,利用運營商數據來驗證手機號、姓名、身份證號、家庭住址。如果借款人是欺詐用戶,這五個信息都可以買到。這個時候就需要進行人臉識別了,人臉識別等原理是調用國政通/公安局 API介面,將申請人實時拍攝的照片/視頻同客戶預留在公安的身份證進行識別,通過人臉識別技術驗證申請人是否是借款人本人。其他的驗證客戶的方式包括讓客戶出示其他銀行的信用卡及刷卡記錄,或者驗證客戶的學歷證書和身份認證。分析提交的信息來識別欺詐大部分的貸款申請都從線下移到了線上,特別是在互聯網金融領域,消費貸和學生貸都是以線上申請為主的。線上申請時,申請人會按照貸款公司的要求填寫多維度信息例如戶籍地址,居住地址,工作單位,單位電話,單位名稱等。如果是欺詐用戶,其填寫的信息往 往會出現一些規律,企業可根據異常填寫記錄來識別欺詐。例如填寫不同城市居住小區名字相同、填寫的不同城市,不同單位的電話相同、不同單位的地址街道相 同、單位名稱相同、甚至居住的樓層和號碼都相同。還有一些填寫假的小區、地址和單位名稱以及電話等。如果企業發現一些重復的信息和電話號碼,申請人欺詐的可能性就會很高。分析客戶線上申請行為來識別欺詐欺詐用戶往往事先准備好用戶基本信息,在申請過程中,快速進行填寫,批量作業,在多家網站進行申請,通過提高申請量來獲得更多的貸款。企業可以藉助於SDK或JS來採集申請人在各個環節的行為,計算客戶閱讀條款的時間,填寫信息的時間,申請貸款的時間等,如果這些申請時間大大小於 正常客戶申請時間,例如填寫地址信息小於2秒,閱讀條款少於3秒鍾,申請貸款低於20秒等。用戶申請的時間也很關鍵,一般晚上11點以後申請貸款的申請 人,欺詐比例和違約比例較高。這些異常申請行為可能揭示申請人具有欺詐傾向,企業可以結合其他的信息來判斷客戶是否為欺詐用戶。利用黑名單和灰名單識別風險互聯網金融公司面臨的主要風險為惡意欺詐,70%左右的信貸損失來源於申請人的惡意欺詐。客戶逾期或者違約貸款中至少有30%左右可以收回,另外的一些可以通過催收公司進行催收,M2逾期的回收率在20%左右。市場上有近百家的公司從事個人徵信相關工作,其主要的商業模式是反欺詐識別,灰名單識別,以及客戶徵信評分。反欺詐識別中,重要的一個參考就是黑名單,市場上領先的大數據風控公司擁有將近1000萬左右的黑名單,大部分黑名單是過去十多年積累下來的老賴名單,真正有價值的黑名單在兩百萬左右。黑名單來源於民間借貸、線上P2P、信用卡公司、小額借貸等公司的歷史違約用戶,其中很大一部分不再有借貸行為,參考價值有限。另外一個主要來源是催收公司,催收的成功率一般小於於30%(M3以上的),會產生很多黑名單。灰名單是逾期但是還沒有達到違約的客戶(逾期少於3個月的客戶),灰名單也還意味著多頭借貸,申請人在多個貸款平台進行借貸。總借款數目遠遠超過其還款能力。黑名單和灰名單是很好的風控方式,但是各個徵信公司所擁有的名單僅僅是市場總量的一部分,很多互聯網金融公司不得不接入多個風控公司,來獲得更多的 黑名單來提高查得率。央行和上海經信委正在聯合多家互聯網金融公司建立統一的黑名單平台,但是很多互聯網金融公司都不太願意貢獻自家的黑名單,這些黑名單 是用真金白銀換來的教訓。另外如果讓外界知道了自家平台黑名單的數量,會影響其公司聲譽,降低公司估值,並令投資者質疑其平台的風控水平。利用移動設備數據識別欺詐行為數據中一個比較特殊的就是移動設備數據反欺詐,公司可以利用移動設備的位置信息來驗證客戶提交的工作地和生活地是否真實,另外來可以根據設備安裝的應用活躍來識別多頭借貸風險。欺詐用戶一般會使用模擬器進行貸款申請,移動大數據可以識別出貸款人是否使用模擬器。欺詐用戶也有一些典型特徵,例如很多設備聚集在一個區域,一起 申請貸款。欺詐設備不安裝生活和工具用App,僅僅安裝和貸款有關的App,可能還安裝了一些密碼破譯軟體或者其他的惡意軟體。欺詐用戶還有可能不停更換SIM卡和手機,利用SIM卡和手機綁定時間和頻次可以識別出部分欺詐用戶。另外欺詐用戶也會購買一些已經淘汰的手機,其機器上面的操作系統已經過時很久,所安裝的App版本都很舊。這些特徵可以識別出一些欺詐用戶。利用消費記錄來進行評分大會數據風控除了可以識別出壞人,還可以評估貸款人的還款能力。過去傳統金融依據借款人的收入來判斷其還款能力,但是有些客戶擁有工資以外的收入,例如投資收入、顧問咨詢收入等。另外一些客戶可能從父母、伴侶、朋友那裡獲得其他的財政支持,擁有較高的支付能力。按照傳統金融的做法,在家不工作照顧家庭的主婦可能還款能力較弱。無法給其提供貸款,但是其丈夫收入很高,家庭日常支出由其太太做主。這種情況,就需要消費數據來證明其還款能力了。常用的消費記錄由銀行卡消費、電商購物、公共事業費記錄、大宗商品消費等。還可以參考航空記錄、手機話費、特殊會員消費等方式。例如頭等艙乘坐次數,物業費高低、高爾夫球俱樂部消費,遊艇俱樂部會員費用,奢侈品會員,豪車4S店消費記錄等消費數據可以作為其信用評分重要參考。互聯網金融的主要客戶是屌絲,其電商消費記錄、旅遊消費記錄、以及加油消費記錄都可以作為評估其信用的依據。有的互聯金融公司專門從事個人電商消費數據分析,只要客戶授權其登陸電商網站,其可以藉助於工具將客戶歷史消費數據全部抓取並進行匯總和評分。參考社會關系來評估信用情況物以類聚,人與群分。一般情況下,信用好的人,他的朋友信用也很好。信用不好的人,他的朋友的信用分也很低,參考借款人常聯系的朋友信用評分可以評價借款人的信用情況,一般會採用經常打電話的朋友作為樣本,評估經常聯系的幾個人(不超過6六個人)的信用評分,去掉一個最高分,去掉一個最低分,取其中的平均值來判斷借款人的信用。這種方式挑戰很大,只是依靠手機號碼來判斷個人信用可信度不高。一般僅僅用於反欺詐識別,利用其經常通話的手機號在黑名單庫裡面進行匹配,如果命中,則此申請人的風險較高,需要進一步進行調查。參考借款人社會屬性和行為來評估信用參考過去互聯網金融風控的經驗發現,擁有伴侶和子女的借款人,其貸款違約率較低;年齡大的人比年齡低的人貸款違約率要高,其中50歲左右的貸款人違 約率最高,30歲左右的人違約率最低。貸款用於家庭消費和教育的貸款人,其貸款違約率低;聲明月收入超過3萬的人比聲明月收入低於1萬5千的人貸款違約率 高;貸款次數多的人,其貸款違約率低於第一次貸款的人。經常不交公共事業費和物業費的人,其貸款違約率較高。經常換工作,收入不穩定的人貸款違約率較高。經常參加社會公益活動的人,成為各種組織會員的人,其貸款違約率低。經常更換手機號碼的人貸款違約率比一直使用一個電話號碼的人高很多。午夜經常上網,很晚發微博,生活不規律,經常在各個城市跑的申請人,其帶貸款違約率比其他人高30%。刻意隱瞞自己過去經歷和聯系方式,填寫簡單信 息的人,比信息填寫豐富的人違約概率高20%。借款時間長的人比借款時間短短人,逾期和違約概率高20%左右。擁有汽車的貸款人比沒有汽車的貸款人,貸款 違約率低10%左右。利用司法信息評估風險涉毒涉賭以及涉嫌治安處罰的人,其信用情況不是太好,特別是涉賭和涉毒人員,這些人是高風險人群,一旦獲得貸款,其貸款用途不可控,貸款有可能不會得到償還。尋找這些涉毒涉賭的嫌疑人,可以利用當地的公安數據,但是難度較大。也可以採用移動設備的位置信息來進行一定程度的識別。如果設備經常在半夜出現在 賭博場所或賭博區域例如澳門,其申請人涉賭的風險就較高。另外中國有些特定的地區,當地的有一部分人群從事涉賭或涉賭行業,一旦申請人填寫的居住地址或者 移動設備位置信息涉及這些區域,也要引起重視。涉賭和涉毒的人員工作一般也不太穩定或者沒有固定工作收入,如果申請人經常換工作或者經常在某一個階段沒有 收入,這種情況需要引起重視。涉賭和涉毒的人活動規律比較特殊,經常半夜在外面活動,另外也經常住本地賓館,這些信息都可以參考移動大數據進行識別。總之,互聯網金融的大數據風控採用了用戶社會行為和社會屬性數據,在一定程度上補充了傳統風控數據維度不足的缺點,能夠更加全面識別出欺詐客戶,評價客戶的風險水平。互聯網金融企業通過分析申請人的社會行為數據來控制信用風險,將資金借給合格貸款人,保證資金的安全。㈡ 大數據在金融科技領域有哪些運用
我覺得大數據在金融科技方面的運用蠻多的,在大數據時代進行抽樣分析就像在汽車時代騎馬一樣,一切都在改變。我們得到的數據再也不是隨機的抽樣,而是所有的數據。「樣本=總體」。大數據的核心:預測。 它是把數學演算法運用到海量的數據上來預測事情發生的可能性。例如,名為Farecast的公司,找到了一個行業機票的預定資料庫,系統預測的結果是根據美國商業航空產業中,每一條航線上每一架飛機內的每一個座位一年內的綜合票價記錄而得出的。通過預測機票價格的走勢以及增降幅度,Farecast票價預測工具能幫助消費者抓住最佳購買時機。到2012年為止,Faecast系統用了將近十萬億條價格記錄來幫助預測美國國內航班的票價,Farecast票價預測的准確度已經高達75%,使用Fcat票價預測工具購買機票的旅客,平均每張機票可節省50美元。
㈢ 大數據如何改變銀行,金融和信貸
作為銀行的一項主要資產業務,貸款資產的運動是一種以「兩權分離、按期償還」為本質特徵的特殊價值運動。在現實經濟活動中,銀行的信貸活動,會受事先無法預料的不確定性因素影響,例如使銀行貸款資金有可能遭受損失事件發生。主要表現為貸款到期不能按時收回和貸款的貶值等,這樣就產生了貸款風險。從目前國有商業銀行貸款資產質量的現狀看,形勢較為嚴峻。
國有商業銀行信貸風險分析
政府行政干預帶來的風險。按照經濟發展的客觀要求,國有銀行是資金配置的主體,政府職能只限於宏觀調控。然而在現實中,作為國有商業銀行,雖然在人事、行政、業務上不受政府直接管控,但並不等於不受政府影響。作為資金配置的主體,政府並未從實際運作的干預中退出,中心地位並未淡化,往往造成部份項目投資效益不高,形成貸款沉澱。
社會保障機制滯後帶來的風險。由於企業破產失業救濟制度不完善,國有銀行貸款風險無法直接分散和轉移。企業與社會的問題沒有解決,企業把生產所需資金缺口留給銀行貸款解決,形成貸款風險壓力;企業保險制度不健全,使銀行無法保全貸款資產的安全性,增加了損失的概率。
法制不健全帶來的風險。盡管我國陸續出台了銀行法、票據法等許多法律,但是這些法律大多內容比較簡單,有些內容有待於重新修訂,並且有些法律與國家的某些政策相悖,銀行在保全債權方面將會遇到較大的阻力,加大了銀行的信貸經營風險。
缺乏科學經營管理帶來的風險。國有商業銀行缺乏科學規范的經營管理方式主要表現在:在經營上把效益性放在首位,而忽視安全隱患;沒有建立起完善的責權對等的管理機制,一旦貸款出現問題,很難分清責任,更談不上追究責任。
借款人(企業)還貸意願不確定帶來的風險。借款人(企業)還貸意願與其(法定代表)的信用相關,還貸能力強的借款人(企業)還貸意願不一定強;還貸能力弱的借款人(企業)還貸意願不一定差。並且,信用度很難進行比較准確的考查、判斷。所以,借款人還貸意願存在很大的不確定性,這種不確定性必然帶來一定的風險。
國有商業銀行信貸風險的控制對策
為有效防止和化解國有商業銀行信貸風險,避免由此帶來的金融震盪和經濟風險,通過上述對我國商業銀行目前面臨的信貸風險原因的分析,我們可以從如下幾個方面著手治理商業銀行的信貸風險。
進一步加強政府監督職能。政企不分一直嚴重困擾我國企業改革和發展。我國信用的深層次問題很大程度上表現為政府行為和地方保護主義。由於政府尚未完成由市場的參與者向市場的管理者的轉變,為了政績需要而急功近利,期望短期內地方經濟有較大起色,過分干預銀行貸款,削弱了市場功能作用和市場法則權威。因此,必須重新界定政府職能、規范政府行為。政府職能是彌補市場缺陷、維護社會公平,著力為企業經營提供必要的經濟環境,同時支持並配合銀行防範和制止企業逃廢債務,確保金融資產的安全運行。
建立健全社會保障體系。形成全社會信用是提高銀行資產質量的重要保證。惡意逃避銀行債務、惡意欠款的單位必須受經濟和法律制裁。作為政府部門,央行應對企業改制中兼並、重組、破產等跟蹤監督,協助金融機構依法維護金融債權;應健全企業信息披露制度,解決銀、企信息不對稱問題:嚴格規范企業會計信息和信息處理標准化,並提高信息公開程度,以降低銀行系統風險。
㈣ 大數據在金融領域的應用主要包括
主要包括以下方面:
1. 客戶的管理
金融機構內部也擁有大量具有價值的數據,如業務訂單數據、用戶屬性數據、用戶收入數據、客戶查詢數據、理財產品交易數據、用戶行為等數據,這些數據可以通過用戶賬號的打通,建立用戶標簽體系。在此基礎之上,結合風險偏好數據、客戶職業、愛好、消費方式等偏好數據,利用機器學習演算法來對客戶進行分類,並利用已有數據標簽和外部數據標簽對用戶進行畫像。進而針對不同類型的客戶提供不同的產品和服務策略,這樣可以提高客戶滲透力、客戶轉化率和產品轉化率。也就是說,通過大數據應用,金融機構可以逐漸實現完全個性化客戶服務的目標。
2. 產品的管理
通過大數據分析平台,金融機構能夠獲取客戶的反饋信息,及時了解、獲取和把握客戶的需求,通過對數據進行深入分析,可以對產品進行更加合理的設置。通過大數據,金融機構可以快速高效地分析產品的功能特徵和喜歡的狀態,產品的價值,客戶的喜好原因,產品的生命周期,產品的利潤,產品的客戶群等。如果處理得好,可以做到把適當的產品送到需要該產品的客戶手上,這是客戶關系管理中一個重要的環節。
3. 營銷的管理
藉助大數據分析平台,通過對形式多樣的用戶數據(基本信息數據、財富信息數據、教育數據、消費數據、瀏覽數據、購買路徑、客戶的微博、客戶的微信、客戶的購買行為)進行挖掘、追蹤、分析,以提升精準營銷水平。
拓展資料:
特徵
1.網路化的呈現。在大數據金融時代,大量的金融產品和服務通過網路來展現,包括固定網路和移動網路。
2.基於大數據的風險管理理念和工具。在大數據金融時代,風險管理理念和工具也將調整。
3.信息不對稱性大大降低。在大數據金融時代,金融產品和服務的消費者和提供者之間信息不對稱程度大大降低。
4.高效率性。大數據金融無疑是高效率的。許多流程和動作都是在線上發起和完成,有些動作是自動實現。
5.金融企業服務邊界擴大。首先,就單個金融企業而言,其最合適經營規模擴大了。由於效率提升,其經營成本必隨之降低。金融企業的成本曲線形態也會發生變化。
6.產品的可控性、可受性。通過網路化呈現的金融產品,對消費者而言,是可控、可受的。
㈤ 大數據和人工智慧在互聯網金融領域有哪些應用
大
數據從四個方面改變了金融機構傳統的數據運作方式,從而實現了巨大的商業價值。這四個方面(「四個C」)包括:數據質量的兼容性
(Compatibility)、數據運用的關聯性(Connectedness)、數據分析的成本(Cost)以及數據價值的轉化
(Capitalization)。
大數據在金融業的應用場景正在逐步拓展。在海外,大數據已經在金融行業的風險控制、運營管理、銷售支持和商業模式創新等領域得到了全面嘗試。在國內,金
融機構對大數據的應用還基本處於起步階段。數據整合和部門協調等關鍵環節的挑戰仍是阻礙金融機構將數據轉化為價值的主要瓶頸。
數據技術與數據經濟的發展是持續實現大數據價值的支撐。深度應用正在將傳統IT從「後端」不斷推向「前台」,而存量架構與創新模塊的有效整合是傳統金融
機構在技術層面所面臨的主要挑戰。此外,數據生態的發展演進有其顯著的社會特徵。作為其中的一員,金融機構在促進數據經濟的發展上任重道遠。
為了駕馭大數據,國內金融機構要在技術的基礎上著重引入以價值為導向的管理視角,最終形成自上而下的內嵌式變革。其中的三個關鍵點(「TMT」)包括:團隊(Team)、機制(Mechanism)和思維(Thinking)。
1.價值導向與內嵌式變革—BCG對大數據的理解
「讓數據發聲!」—隨著大數據時代的來臨,這個聲音正在變得日益響亮。為了在喧囂背後探尋本質,我們的討論將從大數據的定義開始。
1.1成就大數據的「第四個V」
大數據是什麼?在這個問題上,國內目前常用的是「3V」定義,即數量(Volume)、速度(Velocity)和種類(Variety)。
雖然有著這樣的定義,但人們從未停止討論什麼才是成就大數據的「關鍵節點」。人們熱議的焦點之一是「到底多大才算是大數據?」其實這個問題在「量」的層
面上並沒有絕對的標准,因為「量」的大小是相對於特定時期的技術處理和分析能力而言的。在上個世紀90年代,10GB的數據需要當時計算能力一流的計算機
處理幾個小時,而這個量現在只是一台普通智能手機存儲量的一半而已。在這個層面上頗具影響力的說法是,當「全量數據」取代了「樣本數據」時,人們就擁有了
大數據。
另外一個成為討論焦點的問題是,今天的海量數據都來源於何處。在商業環境中,企業過去最關注的是ERP(Enterprise Resource
Planning)和CRM(Customer Relationship
Management)系統中的數據。這些數據的共性在於,它們都是由一個機構有意識、有目的地收集到的數據,而且基本上都是結構化數據。隨著互聯網的深
入普及,特別是移動互聯網的爆發式增長,人機互動所產生的數據已經成為了另一個重要的數據來源,比如人們在互聯網世界中留下的各種「數據足跡」。但所有這
些都還不是構成「大量數據」的主體。機器之間交互處理時沉澱下來的數據才是使數據量級實現跨越式增長的主要原因。「物聯網」是當前人們將現實世界數據化的
最時髦的代名詞。海量的數據就是以這樣的方式源源不斷地產生和積累。
「3V」的定義專注於對數據本身的特徵進行描述。然而,是否是量級龐大、實時傳輸、格式多樣的數據就是大數據?
BCG認為,成就大數據的關鍵點在於「第四個V」,即價值(Value)。當量級龐大、實時傳輸、格式多樣的全量數據通過某種手段得到利用並創造出商業價值,而且能夠進一步推動商業模式的變革時,大數據才真正誕生。
1.2變革中的數據運作與數據推動的內嵌式變革
多元化格式的數據已呈海量爆發,人類分析、利用數據的能力也日益精進,我們已經能夠從大數據中創造出不同於傳統數據挖掘的價值。那麼,大數據帶來的「大價值」究竟是如何產生的?
無論是在金融企業還是非金融企業中,數據應用及業務創新的生命周期都包含五個階段:業務定義需求;IT部門獲取並整合數據;數據科學家構建並完善演算法與
模型;IT發布新洞察;業務應用並衡量洞察的實際成效。在今天的大數據環境下,生命周期仍維持原樣,而唯一變化的是「數據科學家」在生命周期中所扮演的角
色。大數據將允許其運用各種新的演算法與技術手段,幫助IT不斷挖掘新的關聯洞察,更好地滿足業務需求。
因此,BCG認為,大數據改變的並不是傳統數據的生命周期,而是具體的運作模式。在傳統的數據基礎和技術環境下,這樣的周期可能要經歷一年乃至更長的時
間。但是有了現在的數據量和技術,機構可能只需幾周甚至更短的時間就能走完這個生命周期。新的數據運作模式使快速、低成本的試錯成為可能。這樣,商業機構
就有條件關注過去由於種種原因而被忽略的大量「小機會」,並將這些「小機會」累積形成「大價值」。
具體而言,與傳統的數據應用相比,大數據在四個方面(「4C」)改變了傳統數據的運作模式,為機構帶來了新的價值。
1.2.1數據質量的兼容性(Compatibility):大數據通過「量」提升了數據分析對「質」的寬容度
在「小數據」時代,數據的獲取門檻相對較高,這就導致「樣本思維」占據統治地位。人們大多是通過抽樣和截取的方式來捕獲數據。同時,人們分析數據的手段
和能力也相對有限。為了保證分析結果的准確性,人們通常會有意識地收集可量化的、清潔的、准確的數據,對數據的「質」提出了很高的要求。而在大數據時代,
「全量思維」得到了用武之地,人們有條件去獲取多維度、全過程的數據。但在海量數據出現後,數據的清洗與驗證幾乎成為了不可能的事。正是這樣的困境催生了
數據應用的新視角與新方法。類似於分布式技術的新演算法使數據的「量」可以彌補「質」的不足,從而大大提升了數據分析對於數據質量的兼容能力。
1.2.2數據運用的關聯性(Connectedness):大數據使技術與演算法從「靜態」走向「持續」
在大數據時代,對「全量」的追求使「實時」變得異常重要,而這一點也不僅僅只體現在數據採集階段。在雲計算、流處理和內存分析等技術的支撐下,一系列新
的演算法使實時分析成為可能。人們還可以通過使用持續的增量數據來優化分析結果。在這些因素的共同作用下,人們一貫以來對「因果關系」的追求開始松動,而
「相關關系」正在逐步獲得一席之地。
1.2.3數據分析的成本(Cost):大數據降低了數據分析的成本門檻
大數據改變了數據處理資源稀缺的局面。過去,數據挖掘往往意味著不菲的投入。因此,企業希望能夠從數據中發掘出「大機會」,或是將有限的數據處理資源投
入到有可能產生大機會的「大客戶、大項目」中去,以此獲得健康的投入產出比。而在大數據時代,數據處理的成本不斷下降,數據中大量存在的「小機會」得見天
日。每個機會本身帶來的商業價值可能並不可觀,但是累積起來就會實現質的飛躍。所以,大數據往往並非意味著「大機會」,而是「大量機會」。
1.2.4數據價值的轉化(Capitalization):大數據實現了從數據到價值的高效轉化
在《互聯網金融生態系統2020:新動力、新格局、新戰略》報告中,我們探討了傳統金融機構在大變革時代所需採取的新戰略思考框架,即適應型戰略。採取
適應型戰略有助於企業構築以下五大優勢:試錯優勢、觸角優勢、組織優勢、系統優勢和社會優勢,而大數據將為金融機構建立這些優勢提供新的工具和動力。從數
據到價值的轉化與機構的整體轉型相輔相成,「內嵌式變革」由此而生。
例如,金融機構傳統做法中按部就班的長周期模式(從規劃、立項、收集數據到分析、試點、落地、總結)不再適用。快速試錯、寬進嚴出成為了實現大數據價值
的關鍵:以低成本的方式大量嘗試大數據中蘊藏的海量機會,一旦發現某些有價值的規律,馬上進行商業化推廣,否則果斷退出。此外,大數據為金融機構打造「觸
角優勢」提供了新的工具,使其能夠更加靈敏地感知商業環境,更加順暢地搭建反饋閉環。此外,數據的聚合與共享為金融機構搭建生態系統提供了新的場景與動
力。
2.應用場景與基礎設施—縱覽海內外金融機構的大數據發展實踐
金融行業在發展大數據能力方面具有天然優勢:受行業特性影響,金融機構在開展業務的過程中積累了海量的高價值數據,其中包括客戶身份、資產負債情況、資
金收付交易等數據。以銀行業為例,其數據強度高踞各行業之首—銀行業每創收100萬美元,平均就會產生820GB的數據。
2.1大數據的金融應用場景正在逐步拓展
大數據發出的聲音已經在金融行業全面響起。作為行業中的「巨無霸」,銀行業與保險業對大數據的應用尤其可圈可點。
2.1.1海外實踐:全面嘗試
2.1.1.1銀行是金融行業中發展大數據能力的「領軍者」
在發展大數據能力方面,銀行業堪稱是「領軍者」。縱觀銀行業的六個主要業務板塊(零售銀行、公司銀行、資本市場、交易銀行、資產管理、財富管理),每個
業務板塊都可以藉助大數據來更深入地了解客戶,並為其制定更具針對性的價值主張,同時提升風險管理能力。其中,大數據在零售銀行和交易銀行業務板塊中的應
用潛力尤為可觀。
BCG通過研究發現,海外銀行在大數據能力的發展方面基本處於三個階段:大約三分之一的銀行還處在思考大數據、理解大數據、制定大數據戰略及實施路徑的
起點階段。還有三分之一的銀行向前發展到了嘗試階段,也就是按照規劃出的路徑和方案,通過試點項目進行測驗,甄選出許多有價值的小機會,並且不停地進行試
錯和調整。而另外三分之一左右的銀行則已經跨越了嘗試階段。基於多年的試錯經驗,他們已經識別出幾個較大的機會,並且已經成功地將這些機會轉化為可持續的
商業價值。而且這些銀行已經將匹配大數據的工作方式嵌入到組織當中。他們正在成熟運用先進的分析手段,並且不斷獲得新的商業洞察。
銀行業應用舉例1:將大數據技術應用到信貸風險控制領域。在美國,一家互聯網信用評估機構已成為多家銀行在個人信貸風險評估方面的好幫手。該機構通過分
析客戶在各個社交平台(如Facebook和Twitter)留下的數據,對銀行的信貸申請客戶進行風險評估,並將結果賣給銀行。銀行將這家機構的評估結
果與內部評估相結合,從而形成更完善更准確的違約評估。這樣的做法既幫助銀行降低了風險成本,同時也為銀行帶來了風險定價方面的競爭優勢。
相較於零售銀行業務,公司銀行業務對大數據的應用似乎缺乏亮點。但實際上,大數據在公司銀行業務的風險領域正在發揮著前所未有的作用。在傳統方法中,銀
行對企業客戶的違約風險評估多是基於過往的營業數據和信用信息。這種方式的最大弊端就是缺少前瞻性,因為影響企業違約的重要因素並不僅僅只是企業自身的經
營狀況,還包括行業的整體發展狀況,正所謂「覆巢之下,焉有完卵」。但要進行這樣的分析往往需要大量的資源投入,因此在數據處理資源稀缺的環境下無法得到
廣泛應用,而大數據手段則大幅減少了此類分析對資源的需求。西班牙一家大型銀行正是利用大數據來為企業客戶提供全面深入的信用風險分析。該行首先識別出影
響行業發展的主要因素,然後對這些因素一一進行模擬,以測試各種事件對其客戶業務發展的潛在影響,並綜合評判每個企業客戶的違約風險。這樣的做法不僅成本
低,而且對風險評估的速度快,同時顯著提升了評估的准確性。
銀行業應用舉例2:用大數據為客戶制定差異化產品和營銷方案。在零售銀行業務中,通過數據分析來判斷客戶行為並匹配營銷手段並不是一件新鮮事。但大數據
為精準營銷提供了廣闊的創新空間。例如,海外銀行開始圍繞客戶的「人生大事」進行交叉銷售。這些銀行對客戶的交易數據進行分析,由此推算出客戶經歷「人生
大事」的大致節點。人生中的這些重要時刻往往能夠激發客戶對高價值金融產品的購買意願。一家澳大利亞銀行通過大數據分析發現,家中即將有嬰兒誕生的客戶對
壽險產品的潛在需求最大。通過對客戶的銀行卡交易數據進行分析,銀行很容易識別出即將添丁的家庭:在這樣的家庭中,准媽媽會開始購買某些葯品,而嬰兒相關
產品的消費會不斷出現。該行面向這一人群推出定製化的營銷活動,獲得了客戶的積極響應,從而大幅提高了交叉銷售的成功率。
客戶細分早已在銀行業得到廣泛應用,但細分維度往往大同小異,包括收入水平、年齡、職業等等。自從開始嘗試大數據手段之後,銀行的客戶細分維度出現了突
破。例如,西班牙的一家銀行從Facebook和Twitter等社交平台上直接抓取數據來分析客戶的業余愛好。該行把客戶細分為常旅客、足球愛好者、高
爾夫愛好者等類別。通過分析,該行發現高爾夫球愛好者對銀行的利潤度貢獻最高,而足球愛好者對銀行的忠誠度最高。此外,通過分析,該行還發現了另外一個小
客群:「敗家族」,即財富水平不高、但消費行為奢侈的人群。這個客群由於人數不多,而且當前的財富水平尚未超越貴賓客戶的門檻,因此往往被銀行所忽略。但
分析顯示這一人群能夠為銀行帶來可觀的利潤,而且頗具成長潛力,因此該行決定將這些客戶升級為貴賓客戶,深入挖掘其潛在價值。
在對公業務中,銀行同樣可以藉助大數據形成更有價值的客戶細分。例如,在BCG與一家加拿大銀行的合作項目中,項目組利用大數據分析技術將所有公司客戶
按照行業和企業規模進行細分,一共建立了上百個細分客戶群。不難想像,如果沒有大數據的支持,這樣深入的細分是很難實現的。然後,項目組在每個細分群中找
出標桿企業,分析其銀行產品組合,並將該細分群中其他客戶的銀行產品組合與標桿企業進行比對,從而識別出差距和潛在的營銷機會。項目組將這些分析結果與該
行的對公客戶經理進行分享,幫助他們利用這些發現來制定更具針對性的銷售計劃和話術,並取得了良好的效果。客戶對這種新的銷售方式也十分歡迎,因為他們可
以從中了解到同行的財務狀況和金融安排,有助於對自身的行業地位與發展空間進行判斷。
銀行業應用舉例3:用大數據為優化銀行運營提供決策基礎。大數據不僅能在前台與中台大顯身手,也能惠及後台運營領域。在互聯網金融風生水起的當
下,「O2O」(OnlineToOffline)成為了銀行的熱點話題。哪些客戶適合線上渠道?哪些客戶不願「觸網」?BCG曾幫助西班牙一家銀行通過
大數據技術應用對這些問題進行了解答。項目組對16個既可以在網點也可以在網路與移動渠道上完成的關鍵運營活動展開分析,建立了12個月的時間回溯深度,
把客戶群體和運營活動按照網點使用強度以及非網點渠道使用潛力進行細分。分析結果顯示,大約66%的交易活動對網點的使用強度較高,但同時對非網點渠道的
使用潛力也很高,因此可以從網點遷移到網路或移動渠道。項目組在客戶細分中發現,年輕客戶、老年客戶以及高端客戶在運營活動遷移方面潛力最大,可以優先作
為渠道遷徙的對象。通過這樣的運營調整,大數據幫助銀行在引導客戶轉移、減輕網點壓力的同時保障了客戶體驗。
BCG還曾利用專有的大數據分析工具NetworkMax,幫助一家澳大利亞銀行優化網點布局。雖然銀行客戶的線上活動日漸增多,但金融業的鐵律在互聯
網時代依然適用,也就是說在客戶身邊設立實體網點仍然是金融機構的競爭優勢。然而,網點的運營成本往往不菲,如何實現網點資源的價值最大化成為了每家銀行
面臨的問題。在該項目中,項目組結合銀行的內部數據(包括現有的網點分布和業績狀況等)和外部數據(如各個地區的人口數量、人口結構、收入水平等),對
350多個區域進行了評估,並按照主要產品系列為每個區域制定市場份額預測。項目組還通過對市場份額的驅動因素進行模擬,得出在現有網點數量不變的情況下
該行網點的理想布局圖。該行根據項目組的建議對網點布局進行了調整,並取得了良好的成效。這個案例可以為許多銀行帶來啟示:首先,銀行十分清楚自身的網點
布局,有關網點的經營業績和地址的信息全量存在於銀行的資料庫中。其次,有關一個地區的人口數量、人口結構、收入水平等數據都是可以公開獲取的數據。通過
應用大數據技術來把這兩組數據結合在一起,就可以幫助銀行實現網點布局的優化。BCG基於大數據技術而研發的Network
Max正是用來解決類似問題的工具。
銀行業應用舉例4:創新商業模式,用大數據拓展中間收入。過去,坐擁海量數據的銀行考慮的是如何使用數據來服務其核心業務。而如今,很多銀行已經走得更
遠。他們開始考慮如何把數據直接變成新產品並用來實現商業模式,進而直接創造收入。例如,澳大利亞一家大型銀行通過分析支付數據來了解其零售客戶的「消費
路徑」,即客戶進行日常消費時的典型順序,包括客戶的購物地點、購買內容和購物順序,並對其中的關聯進行分析。該銀行將這些分析結果銷售給公司客戶(比如
零售業客戶),幫助客戶更准確地判斷合適的產品廣告投放地點以及適合在該地點進行推廣的產品。這些公司客戶過去往往需要花費大量金錢向市場調研公司購買此
類數據,但如今他們可以花少得多的錢向自己的銀行購買這些分析結果,而且銀行所提供的此類數據也要可靠得多。銀行通過這種方式獲得了傳統業務之外的收入。
更重要的是,銀行通過這樣的創新為客戶提供了增值服務,從而大大增強了客戶粘性。
㈥ 大數據怎樣影響著金融業
大數據對金融行業的影響有很多方面吧,目前大數據的來源主要包括瀏覽、購買、搜索、關注、社交的用戶行為。對於金融行業來說最基本的影響就是對用戶的畫像更加精準了,傳統的數據如年齡職業住址聯系電話等信息自然不在話下,更重要的是對於用戶的興趣、喜好、性格、位置、習慣等細枝末節卻非常有價值的信息的抓取非常到位,這是大數據對於金融行業最直接的影響。除此之外不得不提到的是徵信,傳統徵信所依靠的是結構化的信用手段,需要大量的人工成本,而大數據徵信則更加准確化、自動化、可視化。表述得不是很清楚可能有不夠全面,希望能幫到你!
㈦ 大數據助推金融業發展
大數據助推金融業發展
專家表示,對於金融行業來說,尤其是以銀行、保險為主的金融行業都是非常注重數據應用的,很多企業已經在利用大數據去服務其風險管理、客戶營銷和運營管理等工作。大數據未來將成為全球金融業競爭的主要「陣地」之一。對大數據的應用能力已經成為金融企業的核心競爭力,未來有競爭力的金融企業一定是有深厚大數據文化的企業。
今年《政府工作報告》明確提出要「發展壯大新動能。做大做強新興產業集群,實施大數據發展行動」。近年來,以信息通信技術的創新為基礎,互聯網、大數據和人工智慧等蓬勃發展,新的經濟形態展現出強勁的生命力。接受《金融時報》記者專訪的畢馬威中國大數據團隊學科帶頭人魏秋萍博士表示,對於金融行業來說,尤其是以銀行、保險為主的金融行業都是非常注重數據應用的,很多企業已經在利用大數據去服務其風險管理、客戶營銷和運營管理等工作。
金融大數據值得關注
魏秋萍表示,金融行業本身是一個自帶很大流量的行業。比如一個規模較大的銀行,都擁有海量的客戶。銀行可以利用大數據技術,針對不同的客戶群體制定不同的個性化服務方案,可以創建出很多不同的場景。同時,銀行擁有很多的數據維度,這些數據項又比一般的網路行為大數據擁有更高的價值密度,可以發揮很大的業務價值。因此,金融行業充分利用自己的流量、數據,有效結合外部數據,再配套先進的技術和理念,必然可以成為一個生態體系中的核心組織。
大數據已經被廣受關注,但到底什麼是大數據,並沒有一個被大家普遍認可的定義。魏秋萍認為,要認識大數據,可以從數據和技術兩大層面來看。在大數據這個熱詞沒有出現之前,金融行業早就開始了商務智能分析和數據挖掘,不過這時被分析的數據往往是企業內部的結構化數據。目前,金融企業分析的數據已經不再拘泥於此,而是大大拓寬了數據的廣度,除了結構化數據外,也會根據實際的分析需要來引入非結構化數據,同時也會結合企業內部數據和企業外部數據來開展分析。在技術層面,也有了很大的變革,包括存儲能力、計算能力和演算法種類等,都有長足的進步。在10多年前做數據挖掘的時候,往往由於樣本量龐大需要做采樣技術,現在有了高性能存儲和內存計算等技術的更新,采樣基本不再是必需的了。
魏秋萍預計,大數據未來將成為全球金融業競爭的主要「陣地」之一。與互聯網企業相比,雖然金融行業踐行大數據戰略的起步要晚了一些,但是金融行業利用大數據的進程也發展得很快。對大數據的應用能力,已經成為金融企業的核心競爭力,未來有競爭力的金融企業一定是有深厚大數據文化的企業。大數據提供了全新的溝通渠道和客戶經營手段,可以加深企業和客戶的互動,更及時精準地洞察客戶。大數據也可以幫助金融企業滋生新型的金融業態參與市場競爭,用大數據來武裝自己的金融企業未來一定是某個生態鏈中的關鍵組件。
風控需同步跟上
魏秋萍表示,應用大數據必須要重視數據質量和技術創新。舉例來說,把大數據應用於風險控制是金融業應用大數據最典型的場景之一。在這一場景的應用中,有以下兩點必須注意:一是對於數據的整合和數據的治理。風控是一個復雜的過程,要利用數據對風險進行穿透式管控,必須實現用真實的數據再現業務流程,因此,數據的可獲得性和數據質量非常關鍵。二是先進技術的應用和創新。風控是魔高一尺道高一丈的游戲,「小偷」的伎倆層出不窮,作為「警察」的風控必須要有不斷創新的能力,不斷優化風控的技術。她還表示,從大數據風控技術的角度看,國內和國際的差異並不大,中國也走在了技術的前沿。但是,國外的金融企業對創新技術的容錯會比國內好,他們有一些機制來鼓勵創新技術的試錯。這一點值得國內企業學習。
魏秋萍還認為,應用大數據的時候,數據安全也要同步跟上。保障數據安全的方法主要是三大手段:第一,需要依靠健全的法律制度來保障和約束數據交易的買賣雙方;第二,需要加強數據買賣雙方的道德約束;第三,需要通過安全技術來保障數據的安全。
金融企業應用大數據是一個逐步發展的過程,大數據的價值釋放也必然是循序漸進的。企業內部一致的大數據理念和數據驅動決策的文化,也是大數據助推金融企業發展的保障。
㈧ 大數據金融是什麼
大數據金融是指集合海量非結構化數據,通過對其進行實時分析,可以為互聯網金融機構提供客戶全方位信息,通過分析和挖掘客戶的交易和消費信息掌握客戶的消費習慣,並准確預測客戶行為,使金融機構和金融服務平台在營銷和風控方面有的放矢。
大數據金融的內容:基於大數據的金融服務平台主要指擁有海量數據的電子商務企業開展的金融服務。大數據的關鍵是從大量數據中快速獲取有用信息的能力,或者是從大數據資產中快速變現的能力,因此,大數據的信息處理往往以雲計算為基礎。
(8)大數據是怎樣改變金融企業擴展閱讀:
大數據金融的弊端:
1、大數據對個人信息的大量獲取導致了隱私和安全問題。
隨著個人所在或行經位置、購買偏好、健康和財務情況的海量數據被收集,再加上金融交易習慣、持有資產分布、以及信用狀況以更細致的方式被儲存和分析,機構投資者和金融消費者能獲得更低的價格、更符合需要的金融服務,從而提高市場配置金融資源的能力。
但同時,金融市場乃至整個社會管理的信息基礎設施將變得越來越一體化和外向型,對隱私、數據安全和知識產權構成更大風險。就個人隱私而言,大數據的隱私問題遠遠超出了常規的身份確認風險的范疇。
2、大數據技術不能代替人類價值判斷和邏輯思考。
大數據是人類設計的產物,大數據的工具(如Hadoop軟體)並不能使人們擺脫曲解、隔閡和成見,數據之間相關性也不等同於因果關系,大數據還存在選擇性覆蓋問題。
例如,社交媒體是大數據分析的重要信息源,但其中年輕人和城市人的比例偏多,還存在大量由程序控制的「機器人」賬號或「半機器人」賬號。波
士頓的 StreetBump應用程序為統計城市路面坑窪情況,從駕駛員的智能手機上收集數據,可能少計年老和貧困市民較多區域的情況;「谷歌流感趨勢」曾高估了 2012年流感發病率。這說明依賴有缺陷的大數據可能給政府決策造成負面影響,還可能加劇社會不公。
3、基於大數據開發的金融產品和交易工具對金融監管提出挑戰。
大數據的使用正在改變金融市場,也需要改變監管市場的方式,以保證市場參與者負責地使用大數據。
例如,2010年5月的「閃電暴跌」(flashcrash)令道瓊斯工業平均指數 突然大跌,美國監管部門認為是高頻交易造成了快速拋售引發的更多拋售。大數據中的一個數據點出錯就能導致「無厘頭暴跌」。
監管機構限制大數據技術的使用,或是對其使用進行直接干預,其潛在風險是巨大的,應鼓勵業界對更復雜的技術乃至更大數據的利用。
㈨ 大數據和人工智慧在互聯網金融領域有哪些應用
大數據從四個方面改變了金融機構傳統的數據運作方式,從而實現了巨大的商業價值。這四個方面(「四個C」)包括:數據質量的兼容性(Compatibility)、數據運用的關聯性(Connectedness)、數據分析的成本(Cost)以及數據價值的轉化(Capitalization)。
大數據在金融業的應用場景正在逐步拓展。在海外,大數據已經在金融行業的風險控制、運營管理、銷售支持和商業模式創新等領域得到了全面嘗試。在國內,金融機構對大數據的應用還基本處於起步階段。數據整合和部門協調等關鍵環節的挑戰仍是阻礙金融機構將數據轉化為價值的主要瓶頸。
數據技術與數據經濟的發展是持續實現大數據價值的支撐。深度應用正在將傳統IT從「後端」不斷推向「前台」,而存量架構與創新模塊的有效整合是傳統金融機構在技術層面所面臨的主要挑戰。此外,數據生態的發展演進有其顯著的社會特徵。作為其中的一員,金融機構在促進數據經濟的發展上任重道遠。
無論是在金融企業還是非金融企業中,數據應用及業務創新的生命周期都包含五個階段:業務定義需求;IT部門獲取並整合數據;數據科學家構建並完善演算法與模型;IT發布新洞察;業務應用並衡量洞察的實際成效。
在今天的大數據環境下,生命周期仍維持原樣,而唯一變化的是「數據科學家」在生命周期中所扮演的角色。大數據將允許其運用各種新的演算法與技術手段,幫助IT不斷挖掘新的關聯洞察,更好地滿足業務需求。
㈩ 大數據對金融企業有什麼幫助
善林金融指出,大數據金融有著傳統金融難以比擬的優勢,企業通過自己的徵信系統,實現信用管理的創新,有效降低壞賬率,擴大服務范圍,增加對小微企業的融資比例,降低了運營成本和服務成本,可以實現規模經濟。大數據還能夠通過海量數據的核查和評定,增加風險的可控行和管理力度,及時發現並解決可能出現的風險點,對於風險發生的規律性有精準的把握,將推動金融機構對更深入和透徹的數據的分析需求。另外,大數據金融擴展了企業的海量數據,讓企業更貼近消費者,了解消費者的真正需求,進一步增加客戶黏性。