当前位置:首页 » 网络资讯 » 有什么网站可以评估信号通路

有什么网站可以评估信号通路

发布时间: 2022-10-09 12:12:29

⑴ 【求助/交流】信号通路如何研究

烟大考研(站内联系TA)不懂,还是顶你一下henkally(站内联系TA)LZ能做定量荧光PCR就做定量吧,定量的结果更能被大多数杂志接受。不过信号通路最好还是从蛋白层面进行,分析可能的4条信号通路,做相关蛋白的western blot,检测下游蛋白常见的如磷酸化修饰silicare(站内联系TA)信号通路太复杂了,还是文献吧,当然是 diea了livee(站内联系TA):tiger07:xuec(站内联系TA)多看些英文文献吧,很多有关报道的
看多了你就有思路了
所以还是勤奋点儿吧tongyanna(站内联系TA)我还真不明白啊xp198766(站内联系TA)帮LZ顶,最近我想也知道类似问题的答案,不知道有没有高手会KEGG的,能不能写一点总结出来啊……期待啊……lwiaanngg(站内联系TA)如果你知道大概的途径,可以用上面说的RT-PCR等手段
如果你不知道,你可以使用蛋白microarray/DNA microarray来测定相对变换量sqhnsd(站内联系TA)先做相关的表型观察,看看表型符合那个通路相关的现象,然后做WB、蛋白质相互作用等试验进一步去检测具体的机制如何。但是如何去做,还必须通过看文献才能帮助你解决问题。charlie9(站内联系TA)信号通路的变化,一般与mRNA的变化关系不大。它一般通过关键蛋白分子的修饰有关,因此RT-PCR一般不能说明问题。Western-blots检测被修饰的蛋白分子为好。

⑵ 如何在数据库中查询和某种疾病相关的信号通路

我觉得应该是将获得的DNA序列通过BLAST与NCBI上的序列比对,获得与目的DNA序列最相近的同源序列,根据同源序列的基因功能推断此基因可能的功能。

⑶ 信号通路同时检测磷酸化和非磷酸化的是什么目的

从细胞膜、胞浆到细胞核,存在多条信号通路串联交叉形成的复杂信号网络。该信号网络在细胞受到胞外刺激后将信号通过级联放大、分散调节等方式传入胞内,引起一系列的综合性细胞应答。一种生物效应的出现往往存在多条信号通路的同步活化,可逆的磷酸化修饰反应则是细胞内部最为普遍和节能的信号蛋白活化调节方式。因此,找到激活的信号通路乃至发生磷酸化调变的通路蛋白,往往成生命科学研究的起点。


信号通路磷酸化抗体芯片针对每一个特定蛋白磷酸化位点,设置一对抗体分别检测其磷酸化(Phospho)和非磷酸化(non-Phospho)状态以提高磷酸化检测灵敏度和稳定性,配对的磷酸化和非磷酸化的抗体使特定的位点上的磷酸化状态的改变更加容易分析,可以在同一样本内进行信号的比较,也可以比较样本之间的磷酸化/非磷酸化信号比值的变化。一次芯片实验即可实现多条信号通路的同步筛选和具体调变位点的清晰定位,为后续生物现象的深入探索提供明确的研究方向。

我从上海那个华盈生物网站看到的,啊,不会被和谐掉吧?


⑷ ras基因及信号通路

ras基因首先在Harvery鼠肉瘤病毒(Ha-MSV)和Kirsten鼠肉瘤病毒(Ki-MSV)的子代基因中被发现,在这种子代病毒中发现含有来源于 宿主细胞 的基因组的新基因序列,此后人们将这种宿主细胞基因称为ras基因。

KRAS基因突变与肺癌、胰脏癌和大肠癌的发生有着密切的关系,52﹪的肺腺癌病人有KRAS基因的突变。台湾地区胰脏癌的病人的研究结果显示,有高达90﹪突变率。

1982年Weinberg和Barbacid首先从人膀胱癌细胞系中分离出一种转化基因,可使 NIH 3T3 细胞发生恶性转化,而从正常人组织中提取的DNA则无此种作用。随后,Santos与Parada发现上述转化基因并非新型基因,而是Harvery鼠肉瘤病毒ras基因的人类同源基因,命名为H2ras。同年,Krontiris在人肺癌细胞中发现Kirsten鼠肉瘤病毒基因的同系物,称为K-ras.另一种相似的基因是在人 神经母细胞瘤 DNA感染NIH3T3细胞时发现的与ras类似的基因,称为N2ras,此种基因和病毒无关.

[编辑](javascript:;)[ 语音](javascript:;)

ras基因 在进化中相当保守,广泛存在于各种 真核生物 如哺乳类,果蝇,真菌,线虫及酵母中,提示它有重要的生理功能.哺乳动物的ras基因家族有三个成员,分别是H-ras,K-ras,N-ras,其中K-ras的第四个外显子有A,B两种变异体.各种ras基因具有相似的结构,均由四个外显子组成,分布于全长约30kb的DNA上.它们的编码产物为 相对分子质量 2.1万的蛋白质,故称为P21蛋白.已证明,H-ras位于人类11号染色体短臂上(11p15.1~p15.3),K-ras位于12号染色体短臂上(12p1.1~pter),N-ras位于1号染色体短臂上(1p22-p32),除了K-ras第四个外显子有变异外,每个ras基因编码P21的序列都平均分配在四个外显子上,而内含子的序列及大小相差很大,因而整个基因也相差很大,如人K-ras有35kb长,而N-ras长为3kb.由于有两个第四号外显子,K-ras可以两种方式剪接,但编码K-ras-B的mRNA含量高.除K-ras-B含有188个氨基酸外,其他两种 Ras蛋白 均含有189个氨基酸.

[编辑](javascript:;)[ 语音](javascript:;)

3.1 Ras蛋白的结构

Ras蛋白为膜结合型的GTP/GDP 结合蛋白 , 相对分子质量 为2.1万,定位于细胞膜内侧.它由188或189个氨基酸组成,它的第一个结构域为含有85个 氨基酸残基 的 高度保守序列 ,接下来含有80个氨基酸残基的结构域中,Ras蛋白结构轻微不同,除了K2Ras末端25个氨基酸由于不同的外显子而分为A型和B型外,其余Ras家族成员最后四个氨基酸均为Cys1862A2A2X2COOH序列.Ras蛋白存在4种异构型:H2Ras,N2Ras,K2Ras4A和K2Ras4B,它们是3种基因的产物,其中K2Ras4A和K2Ras4B是同一基因不同剪接的结果.

3.2 Ras蛋白的功能

Ras(P21)蛋白位于细胞膜内侧,它在 传递细胞 生长分化信号方面起重要作用.它属于 三磷酸鸟苷 (GTP)结合蛋白(一种细胞信息传递的耦联因子),通过GTP与 二磷酸鸟苷 (GDP)的相互转化来调节信息的传递.P21与GTP和GDP有很强的亲和性,而且有较弱的GTP酶活性.正常情况下P21和GDP结合处于失活状态,当细胞外的生长分化因子把信号传导到胞膜内侧的P21时,可增强P21与GTP结合活性,使P21和GTP结合成为激活状态,信号系统开放.因为P21有GTP酶活性,可使GTP水解成GDP,P21和GDP结合后P21失活,信号系统关闭.正常情况下P21的GTP酶活性很弱,当和 GTP酶激活蛋白 (GAP)结合后其水解速度可提高1万倍而使P21失活.P21和GDP结合后可以激活鸟苷酸释放蛋白(GNRP),GNRP使P21释放GDP结合GTP,因此通过GTP和GDP的相互转化可以有节制地调节P21对信号系统的开启和关闭,完成生长分化信号传入细胞内的过程.

Ras蛋白在合成后,需要经过两种方式翻译后修饰,才可定位于细胞膜内侧.①通过FTase在Ras蛋白羧基端的CAAX四肽结构中的Cys残基上加上一个类异戊二烯基团法尼基,随后AAX残基从C端上断裂脱落,法尼基化Cys

羧甲基化,此修饰使RasC端具有疏水性;②N2或H2ras的 半胱氨酸 的S2酰基化,长链的S2酰基取代基使ras具有疏水性.有研究表明,激活ras的表达能增强血管生长因子(例如VEGF/VPF)的表达,提示Ras蛋白在 血管生成 中发挥作用,抑制Ras蛋白活性能抑制依赖Ras蛋白的肿瘤细胞增殖,也能干扰血管生成.同时,激活Ras蛋白还能抑制凋亡.Ras蛋白过度表达还能增加药物和紫外光诱导的凋亡,可能的机制是 ras癌基因 增强了细胞分解 过氧化氢 的能力从而抑制凋亡.然而,这个假说还需进一步研究.

[编辑](javascript:;)[ 语音](javascript:;)

4.1 ras基因激活的方式

作为原癌基因的ras基因被激活以后就变成有致癌活性的癌基因.ras基因激活的方式有3种:基因点突变,基因大量表达,基因插入及转位.其中ras基因被激活最常见的方式就是点突变,多发生在N端第12,13和61密码子,其中又以第12密码子突变最常见,而且多为GGT突变成GTT.不同突变位点对P21的活化机制不同,第12密码子突变可以减弱P21内在的GTP酶活性,并使细胞凋亡减少,细胞间接触抑制减弱;第61密码子突变可削弱GAP对P21的内在GTP酶活性,并可减弱GAP与P21结合的稳定性.

4.2 ras基因突变致癌的机制

ras基因激活构成癌基因,其表达产物Ras蛋白发生构型改变,功能也随之改变,与GDP的结合能力减弱,和GTP结合后不需外界生长信号的刺激便自身活化.此时Ras蛋白内在的GTP酶活性降低,或影响了GTP的活性,使Ras蛋白和GTP解离减少,失去了GTP与GDP的有节制的调节,活化状态的Ras蛋白持续地激活PLC产生第二信使,造成细胞不可控制地增殖,恶变.同时细胞凋亡减少,细胞间接触抑制增强也加速了这一过程.

[编辑](javascript:;)[ 语音](javascript:;)

Ras2MAPK信号转导途径

5.1 Ras上游通路

Ras能被复杂的网络激活.首先,被磷酸化激活的受体如PDGFR,EGFR直接结合 生长因子受体 结合蛋白(Grb2),这些受体也可以间接结合并磷酸化含有src同源区2(SH2)结构域的蛋白质(例如Shc,Syp)后,再激活Grb2.第二,Grb2的src同源区3(SH3)结构域与靶蛋白如mSos1,mSos2,C3G及发动蛋白(dynamin)结合.C3G与连接蛋白Crk的SH3结构域结合后耦联酪氨酸磷酸化而激活Ras.Crk也能结合mSos1激活Ras.Grb2与激活的受体结合促进鸟苷酸交换因子(Sos)蛋白定位在与Ras相邻的细胞膜上.这样,Sos与Ras形成复合体,GTP取代GDP与Ras结合后,Ras被激活,当GTP水解成GDP后Ras失活.Ras具有内在GTPase活性,它的活性可被RasGAPs调节,因而RasGAPs扮演Ras活性调节剂的角色.另外,Ras失活也受到高度调节。有三种蛋白质能水解GTP使Ras失活,它们分别是P120GAP,neurofibromin和GAP1m,统称为RasGAPs.

5.2 Ras下游通路

5.2.1 Ras/Raf通路

至今,Ras/Raf通路是最明确的信号转导通路.当GTP取代GDP与Ras结合,Ras被激活后,再激活丝苏氨酸激酶级联放大效应,招集细胞浆内Raf1丝苏氨酸激酶至细胞膜上,Raf激酶磷酸化MAPK激(MAPKK),MAPKK激活MAPK.MAPK被激活后,转至细胞核内,直接激活转录因子.另外,MAPK刺激Fos,Jun转录因子形成转录因子AP1,该因子与myc基因旁的特异的DNA序列结合,从而启动转录.myc基因产物也是转录因子,它能激活其他基因.最终,这些信号集中起来诱导D型Cyclin的表达和活性.D型Cyclin与Cyclin依赖性激酶(如CDK4和CDK6)形成复合体,该复合体的形成促使细胞从G1期进入S期.因此,Ras/Raf通路在受体信号和G1期进展之间起着关键作用.然而,Ras/Raf通路不是调控G1期进展的惟一通路.Ras与Raf单独结合不能促进Raf激酶活性,同时,Raf能被不依赖Ras的机制所激活(例如能被Src酪氨酸激酶和PKC所激活),MAPK也能被不依赖Ras机制(如通过调节整合素的活性)所激活.表明级联反应每一个信号蛋白质都能被多个上游蛋白质所激活,而它们也可能有另外的靶蛋白.另一个重要的Ras通路效应物是Cyc2lin依赖性激酶抑制剂P21Waf1/cip1,它被Ras所诱导,抑制Cdk2CyclinE和Cdk2CyclinA复合体的活性,从而阻断DNA的合成.

5.2.2 Rho/Rac通路

Rho家族蛋白质是 小G蛋白 的 Ras超家族 成员,其氨基酸序列大约有30%与Ras蛋白相同,三个主要的Rho蛋白是Cdc42,Rho,Rac.Cdc42刺激Rac,Rac接下来刺激Rho.然而,这个直线模型对于精确的信号转导通路来说过于简单,因为有证据显示交叉联系存在,例如Cdc42不通过Rac能影响Rho的活性.下游靶点Rho激酶α的激活,导致肌动蛋白的重新构建和P21激活的丝苏氨基酸激酶参与应力纤维的分解.最后Rac和Cdc42利用MAPK传递信号至核内,Rho通过刺激Src和fos启动子达到转录调节的作用.另外,Rac和Cdc42激活JunN端激酶,该酶结合Jun,EIk1和ATF2等转录因子,这就是Rho在细胞癌变过程中起重要作用的可能机制.另一个重要Rho下游靶点是P21Waf1/cip1.Rho抑制P21Waf1/cip1诱导,有利于Ras驱动细胞进入S期,P21Waf1/cip1阴性细胞不需要Rho进行Ras激活的DNA合成,降低了通过诱导P21Waf1/cip1在Ras转化过程中的重要性.

5.3 Ras2MAPK信号途径与肿瘤的关系

肿瘤发生 与调控 细胞增殖 的信号发生异常有关.一些肿瘤病人 生长因子 或其受体的表达或功能出现异常,如卵巢癌病人血清中EGF和 胰岛素样生长因子 含量升高;EGF增高影响细胞间连接,促进细胞转移和浸润.临床资料表明, 酪氨酸蛋白激酶受体 过表达与肿瘤相关,ErbB22在乳癌病人中30%过表达;起源于上皮的肺癌,乳癌等EGFR过表达,并与高转移率,低生存率以及差的预后相关,通过降低EGFR表达可抑制EGFR过表达的卵巢癌细胞的增殖.肿瘤细胞ras基因突变率大约为25%,而胰腺癌和结肠癌分别达到85%和40%. ras癌基因 主要以点突变和基因扩增方式存在,突变位点在第11,12,13,18,59,61密码子,是Ras蛋白和GAP的作用位点,由于突变,抑制了Ras内在的GTP酶活性,突变的Ras锁定在持续激活的Ras2GTP状态,引起细胞的恶性转化.raf癌基因与人类肿瘤关系密切,很少突变,但Raf持续活化,可导致细胞恶性转化;在 小细胞肺癌 病人的组织标本中,Raf在mRNA和蛋白水平均过表达,活性增高.在肿瘤治疗的研究中,可从以下几方面阻断Ras2MAPK 信号转导途径 :① 酪氨酸蛋白激酶抑制剂 ,如Radici2col抑制V2Ha2ras转化的NIH3T3细胞的MAPK活性,使细胞表型逆转;新研究的酪氨酸蛋白激酶抑制剂能双重作用ErbB22和EGFR,广泛抑制ErbB22或(和)EGFR过表达的肿瘤生长.②抑制Ras法尼基化: 法尼基转移酶抑制剂 (FTIs)是分子水平抗癌药,抑制ras翻译后修饰,已有多种FTIs用于动物模型和临床前期实验,有明显的抗肿瘤作用,如SCH66336对表达高水平H2Ras2GTP和ras是否突变的肿瘤都有生长抑制作用,已进入临床试验.③反义核苷酸技术:C2H2ras 反义RNA 质粒降低人胃癌BGC2823细胞的H2ras表达并抑制细胞生长和部分恶性表型逆转;Raf21反义DNA抑制人 白血病 细胞的增殖.④其他:针对 受体酪氨酸激酶 与底物作用的SH2区或SH3区设计多肽,在体外实验抑制酶和底物结合.

[编辑](javascript:;)[ 语音](javascript:;)

6.1 诊断

ras癌基因 和P21在许多癌前病变中都有表达.Ochi等发现1例胰液中K2ras突变 阳性 而细胞学及影像学检查均阴性的病例,随诊18个月后才发现恶性细胞及影像学的变化.提示ras基因突变早于病理检出及临床表现的出现.提示可用检测ras癌基因或P21的方法对癌变倾向提供较早信息.Kimura等检测切除的胰腺标本中K2ras的突变率,在胰导管癌,胰黏液细胞癌和慢性胰腺炎中分别是81%,53%和7%,相应胰液中的突变率分别为72%,53%和0,所以检测胰液中突变的K2ras基因即可为 临床诊断 提供有力的帮助.Futakawa等检测52例胰腺癌病人胰液中突变的K2ras基因和 癌胚抗原 水平,结果显示这两项指标联合检测在胰腺癌诊断中的准确度是90%,因此可用联合检测的方法及早而准确地诊断肿瘤.

6.2 病情评估及预后判断

Shirakawa等通过检测P21,P53,Ki67和 细胞角蛋白 10发现食管鳞癌的分化程度取决于发育不良的程度,而P21在这个演化过程中起关键作用.Rak等发现突变的ras基因可强效刺激 血管内皮细胞生长因子 的表达.Thebo等对有K2ras12或13密码子突变的DukesB2期 结直肠癌 进行分析显示,80%的原发灶和局域 淋巴结 发生相同位点的ras基因突变,说明ras基因突变对肿瘤 淋巴结转移 是高风险因素.有文献报道,唾液腺癌中H2ras基因突变率与临床病理指标呈高度正相关,可通过检测基因突变来推测肿瘤所处的阶段和分化程度.可见检测突变的ras基因可为临床病情的评估提供有力的依据.

Harada等研究表明,P21(-)者5年生存率为64.1%,(+)者为38.0%,⑹者为11.5%,P21是决定生存率的重要而独立的指标.但许多文献报道ras基因突变和临床病理指标及预后没有明显的关系.联合检测 非小细胞肺癌 组织中K2ras,p53和cerbB2基因的异常表达,比单项检测可明显地提高对预后的评估,因此,可用联合检测对某种肿瘤较敏感的几个癌基因的方法来对预后进行评估.

6.3 治疗

研究表明,体外给予结肠癌细胞(HCT116/P21+/+)P21 反义寡脱氧核苷酸 ,可提高癌细胞对放疗的敏感性;用末端含CAAX碱基的制剂作用于人类 ras癌基因 转染的 动物细胞 ,可抑制癌细胞的生长;用核糖酶(K2rasR2)拮抗突变的K2ras12细胞系,可使细胞生长停止,凋亡增加,VEGF 基因表达 受抑.可见用分子生物学的方法治疗肿瘤是有广阔应用前景的.

总之,虽然对ras基因,Ras蛋白及Ras信号转导通路的研究已达一定的深度,ras基因已在临床有一些应用,但仍有许多问题需解决,如ras基因突变发生在肿瘤形成的那些阶段,Ras信号转导通路与其他信号转导通路相互影响,相互交叉,阻断单一信号转导通路能否真正起到改变或影响 肿瘤发生 发展的作用等.随着对这些问题的研究,解决,人们将对肿瘤的预防,诊断和治疗提供更新更有效的方法.

Ras癌基因参与人类肿瘤的发生发展,最初是在急性转化性逆转录病毒实验中从Harvey、Kirsten两株大鼠肉瘤病毒中克隆出来的转化基因,自1982年Weinberg等人发现人的膀胱癌细胞中有活化的H-ras基因后,引起了人们对 ras癌基因 在人类肿瘤发生发展过程中所起的作用的极大关注。

ras基因家族与人类肿瘤相关的基因有三种——H-ras、K-ras和N-ras,分别定位在11、12和1号染色体上。其中,K-Ras则对人类癌症影响最大,它好像 分子开关 :当正常时能控制调控细胞生长的路径;发生异常时,则导致细胞持续生长,并阻止细胞自我毁灭。

⑸ 信号通路研究思路

原文:信号通路研究思路_网络文库 https://wenku..com/view/449d5a41ec3a87c24128c450

证明一个药物能通过抑制P38表达而发挥保护细胞的作用,需要做的是:

要证明你的药物是通过抑制P38表达而发挥保护作用,

首先 ,要证明P38表达增加会导致损伤。

其次,要证明你的药物存在保护作用。

再次,证明你的药物可以抑制P38表达。

最后,证明你的药物是由于抑制了P38表达而发挥保护作用。

这里需要建立一个损伤模型。正如你提到的,钙离子导致P38mapk的增高,如果某种损伤可以通过钙离子导致P38mapk的增高,那么你就建立起了一个损伤模型。这时,对P38做个RNA干扰,使其表达下降,再来损伤刺激,如果这时损伤刺激不会导致损伤,那么可以说P38mapk的增高会导致损伤。

这里最好不要用P38的抑制剂SB来处理,因为这个抑制剂是针对P38活性的抑制剂,抑制的是P38的磷酸化,而不是表达量。

如果说明的问题是p38磷酸化水平增加而导致损伤,那么我建议用抑制剂。这时还可以用Dominant-negative。抑制剂的实验证实该药物不影响P38表达,而影响其活化。(应该首先考虑选用抑制剂,因为目前一些药物的作用机制不是抑制靶点的表达,而是抑制靶点的激活。如果在此应用RNAi的话,很可能会漏掉这个机制或增加实验步骤。)

当然就是用你的药物先处理一下,再来损伤刺激,如果这时损伤刺激不会导致损伤,那么可以说你的药物存在保护作用。

用你的药物先处理一下,再来损伤刺激,再检测P38表达,如果用药组相对于没有用药组P38表达下降,那么可以说你的药物可以抑制P38表达。

这一步看似不必要,其实是最重要的步骤,而国内的文章往往忽略了这一关键环节。

这里建议还是用RNA干扰P38表达,再用你的药物处理,再进行损伤刺激,如果用药组与没有用药组的损伤程度一致,那么才可以说你的药物是由于抑制了P38表达而发挥保护作用。

抑制剂也有其局限性,有时是“致命”的,主要原因是抑制剂缺乏特异性。虽然我们在文章里看到用抑制剂的时候都说是什么什么的特异性抑制剂,但真的那么特异吗?其实往往是作者为了写文章发文章的需要而夸大了抑制剂的特异性。细胞里无数的信号通路,谁也不能保证抑制剂在作用于靶分子时不会影响其他信号通路。其实无论什么抑制剂,对剂量的要求都相对比较苛刻,为什么?就是因为一旦浓度高了,就不知道会干扰到其他哪些信号通路,从而产生很多说不清道不明的现象。

PI3K的抑制剂---LY294002和wortmannin,它们都能抑制PI3K和相关的激酶,但LY294002的浓度达到200μM常用来抑制DNA依赖的蛋白激酶(DNA-PK);wortmannin在浓度超过3μM常用来抑制运动失调性毛细血管扩张基因突变(ATM)以及DNA-PK。相对而言,MEK1/2的抑制剂U0126和PD98059以及P38MAPK的抑制剂SB203580就要好一些。所以研究人员一般应用LY294002时采用20μM,应用wortmannin时采用0.2μM,以此来最小化其他的效应。有些学者们同时应用两种抑制剂进行对比,也许也有顾及于此的原因吧。

但是,从严谨的角度讲起特异性的话,RNAi也不能说是绝对特异的,我们只能说它是高特异性,因为RNAi的机制中还有很多没有完全阐明。 一些研究者会在RNAi处理后,还要在实验中应用Western来同时检测该蛋白所在家族的其他成员的表达量变化以检测其特异性和选择性,以表严谨 。举个例子:

比如针对Survivin进行RNAi之后,你最好同时检测XIAP , cIAP1/2等蛋白。当然,如果你所针对基因的siRNA构建已经很成熟,有前人的文章检测特异性做基础,那就另当别论了,所以给科研态度很严谨的lwjssry兄弟提个醒,如果你的siRNA序列尚无很好的文献应用基础,这个问题你也许应该考虑的。

临时找到一个描诉相关内容的06年文献,影响因子3分多,截取其中的内容供参考

信号通路有细胞特异性和条件特异性,即同一信号通路在不同的细胞之间或同一细胞在不同的条件下,作用机理可能是不同的。

细胞内的信号通路之间存在复杂的相互作用,想证明哪一个分子是另一分子的充要条件真的很难。本人最近研究了一个信号系统的两个信号分子,A和B。A在细胞质,B在细胞核。以往的研究已经证明A是B的上游信号通路之一。我们的研究是想证明在某种病理过程中A和B作为一个系统发挥作用。我们首先应用能够提升该系统的药物干预,发现A升高的同时B也得到升高,但这也不能说明什么问题。所幸的是A分子目前有特异性的阻断剂,于是我们便对A分子的激活进行阻断,结果发现B分子的激活也收到抑制。由此初步推测A和B可能在某种病理过程中作为一个系统发挥作用。但也只能证明了A是B的必要条件而已。

做信号传导的在于你研究一种的机制有什么作用,其机制是否于信号传导有关,有哪些关系,是什么原因导致此信号传导的表达,表达后的下游基因怎么变化,这中间最好有基因敲出或者抑制剂和激动剂干预后看看上游 下游之间的变化和你预期的结果有没有关系。如果单纯的做信号传导而去做没有什么意义的,就像前面楼上说的一样信号的启动/最终发挥功能!

“想证明哪一个分子是另一分子的充要条件真的很难”。 我最近正在做一个实验,证明A对B的作用。先用外源物处理细胞,跑wetern blot,发现A和B都有所增加,B的量增加在A之后。于是用抑制剂抑制A,以及用siRNA使A knockdown,然后看B的表达量也下来了。但是这也只能证明A和B有关联,无法证明A对B是直接作用还是间接作用。甚至无法说明B的改变是A信号knockdown造成的,还是A信号knockdown以后,细胞为了弥补该信号的不足,补充促进了C信号,而C信号可以改变B信号。最近在考虑用Co-IP证明A和B有结合作用,也许能证明A和B的直接关系。

探讨信号转导中分子间的充要条件,与探讨数学中的充要条件是不一样的,因为细胞中信号转导通路往往存在反馈机制。即使X是上游信号,Y是下游信号,改变Y信号也会通过反馈机制使得X信号发生改变。所以,在考虑生物体内的信号分子间充要条件时会复杂得多,要慎之又慎下结论。

信号分子的环路效应普遍存在

个人觉得研究A分子与某个信号通路应该更具体得分为两种情况:

1,以前还不知道A分子是这个信号通路的成分,这时我们要证明A分子是这个信号通路的成分,这时的研究就是上文谈到的研究内容了。

2,A分子是信号通路的成分,这是已知的,现在发现某个现象跟这个通路有关,现在我们要证明A分子是这个信号通路参与这个现象的关键分子,则又是另一种模式。1,“创造信号通路”,别人没有研究过A和B 之间的相互作用,而你发现了,并证明了,这就是创造,其实准确点说应该是“发现”,因为信号通路是客观存在的,只不过被找到了而已,不过用“创造”这个词比较形象。这一类的研究是开创性的,比较困难的,研究的时候常常是用免疫共沉淀去把与某个蛋白结合的一堆蛋白都搞出来,再做质谱分析,进行鉴定,再进一步证明两者间的相互作用,这就涉及到充分必要条件的证明。单纯进行这一类的研究缺乏目的性和研究的意义,所以通常还是建立于某种现象基础上的,用自己“创造”的信号通路来解释某种现象,也就是下面说的第二种模式。

2,“利用信号通路”,利用别人或自己“创造”的信号通路来解释某个具体的现象,比如,某个药物、某种毒物、某种应激、某种射线、等等,在这些刺激下,具体到某种细胞的某条信号通路发挥调控作用。

在第一类中,是用充分必要条件来证实A分子与B分子的作用。

在第二类中,是用充分必要条件来证实A现象与B信号通路之间的关系。

看文献是最基础的训练,看文献,一是看思路,二是学技术和逻辑思维。思路告诉我们为什么去做,技术和逻辑思维教我们怎么去做。

过表达A基因,发现B基因的mRNA水平明显增加,对应的B的蛋白水平也明显增加;干扰A基因表达,发现B基因的mRNA水平明显降低,对应的B的蛋白水平也明显降低。投稿,被拒稿,主要原因是审稿人提出:应该弄清楚A是如何调控B的表达的。请问各位老师,A调控B可能是通过什么途径?需要做什么实验?A和B都是脂类代谢中的酶基因,它们在胞浆和核内都有表达。

回答:

1、下一步应该搞清楚B基因mRNA改变的原因是什么,在转录水平还是影响了RNA的稳定性。

2、假设A和B是直接关联的(假定A影响B的转录),是否一般得做两个实验:Luciferase reporter assay和CHIP assay?只做一个CHIP实验行不行?其中Luciferase reporter assay是否就是为了检验A蛋白是否能结合到B基因的Promoter区?是不是A蛋白必须得是转录因子才有可能结合到B基因的Promoter区?另外,怎么知道A蛋白是不是转录因子呢?

针对这个问题的回答:不过建议找几篇JBC上的文章看看,JBC上这种调调的文章挺多的,精读3-5篇,把它的outline搞清楚,你就胸有成竹了。——我打开JBC网站一看,呵呵,每期专门有Gene Regulation板块。根据JBC上面的文章,A调控B基因,很多都是通过第三者如转录因子实现的。我再翻出以前自己的Real-time PCR实验结果,发现过表达A基因后,转录因子C的mRNA水平显着增加,而干扰A基因表达,转录因子C的mRNA水平显着降低。目前这个现象还没有文献报道。后期,我准备通过Luciferase reporter assay和CHIP assay来验证转录因子C是否能与B基因作用。我想请教的问题是:A基因调控转录因子C,除了前期的Real-time PCR实验(当然再补一个Western Blot实验),我还需要做其他实验吗?会不会审稿人再提出:你需要弄清楚A基因如何调控转录因子C才行。说简单点:A基因通过转录因子C调控基因B,是否要将A影响C,C影响B两步都弄清楚?——看你的目标杂志了,如果是JBC这样偏机制的,估计会要你说清楚的

3、A可以影响B的mRNA水平,也能影响B的蛋白水平,这样的话,可能是只通过影响B的RNA水平影响B的蛋白表达,也可能同时影响B的RNA水平和B的蛋白稳定性。B的蛋白稳定性你可以通过加入CHX检测B的半衰期。另外就是你说的Luciferase reporter assay实验。

4、A和B的变化总是一致的,应该很有可能是通过转录水平调控的,因为你的mRNA、蛋白都变了。既然是转录水平,那就要找到B的启动子的序列,对应和这个序列结合的蛋白,这个蛋白可能是A也可能是其他的间接的。

http://..com/question/187327495.html
将两种因子A和B分别做基因沉默,沉默A gene 看看A和B表达的情况,然后沉默B gene 再看看A和B表达的情况。上游的因子被沉默表达后,下游的因子肯定表达下调或不表达。而下游因子被沉默表达后,上游因子的表达不会受影响。还可以做个免疫共沉淀,看看上游因子是不是直接结合(作用)于下游因子的基因启动子区,开启下游表达。如若不是,可能另有其他的环节在中间过程。

http://www.helixnet.cn/bbs/thread-19295-1-1.html
《受体信号转导研究方法(第2版) 》
作者: (英)维拉斯(Willars,G.B.),(英)查理斯(Challiss,R.A.J)原着,
张幼怡主译
出 版 社: 北京大学医学出版社
出版时间: 2008-3-1 <wbr>
这本书全面反映了G蛋白偶联受体(GPCR)及其信号转导领域中最新的研究现状和成就,详细介绍了受体及其信号转导研究的技术、方法及原理。内容涉及受体与配体的结合、受体抗体的制备、受体与G蛋白的相互作用和激动、受体表达和定位、受体内化和翻译后修饰、GPCR与蛋白质相互作用以及如何利用敲除和敲人策略研究受体生理与药理功能等新技术、新策略。

可以通过对受体 加抗体处理 或者 RNAi/过表达 等方式,调节受体表达量,然后用 基因芯片技术 研究下游通路各基因的表达情况。

在上述方法做完后,可以用受体的好用的抗体,做个免疫共沉淀(CoIP),将所有和它相互作用的蛋白抓下来,直接煮珠子(protein A-argrose-beads),做SDS-PAGE,用IgG做对照,然后打质谱,鉴定出差异蛋白,当然这只是补充试验,胶图上分子量大的可能是下游蛋白,而分子量小的可能是上下游信号蛋白。

⑹ western blot 研究未知的信号通路的大致步骤 或者给篇信号通路研究的经典文献也行,fxw0110/ 163.com

有人的歌哈特

⑺ 信号转导和信号通路有什么区别

【1】信号转导更大一点,包括分子结构调节、活性调节、蛋白表达等等。信号通路是信号转导的具体过程,从上游到下游。
【2】信号:信号是数据的电磁编码或电子编码。和数据一样,信号也分为模拟信号和数字信号。模拟信号是指电信号的参量是连续取值的,其特点是幅度连续。常见的模拟信号有电话、传真和电视信号等。数字信号是离散的,从一个值到另一个值的改变是瞬时的,就像开启和关闭电源一样。数字信号的特点是幅度被限制在有限个数值之内。常见的数字信号有电报符号、数字数据等。信号是运载消息的工具,是消息的载体。从广义上讲,它包含光信号、声信号和电信号等。

⑻ reactom 和kegg信号通路哪个更权威

KEGG好像是个数据库吧!程序或软件我还没听说过,我搞竞赛那会儿都是用实验方法,我当年全国竞赛实验考试就是限定时间内降解一个娃哈哈矿泉水瓶!

⑼ 怎么一次下载kegg数据库中的全部通路数据

kegg 中的通路怎么运用到基因
这个只是皮毛介绍一下KEGG,具体操作还要自己摸索的,用文字不好描述,我还是会一点的,就是先将基因的序列下载下来,上传到KEGG,KEGG会将基因的信号通路网址信息发到你邮箱里,你就可以看到你的目的基因在那些信号通路里有,我有篇这方面的文章发在蚕业科学上,不过刚接受
最简单,但是未必最有效的办法,但是最快 抽个样本,把你的目标基因打上标记,然后建立一个模型,比如决策树等等 模型质量不错的情况下跑全库,然后找出分类结果为你目标分类的记录

⑽ 基因信号通路中DNA一个圆圈是什么意思

——>o——> 转录激活

——>e——>也是促进基因表达