㈠ 如何用大数据做高效社会创新
随着信息技术的飞速发展,各领域的数据量都在爆发式增长,尤其在云计算、物联网、移动互联网等it技术得到广泛应用之后,数据的增长实现了从量变到质变的转型,大数据如浪潮般席卷而来,人类社会进入大数据时代。大数据不仅仅只是一次颠覆性的技术革命,更是一场思维方式、行为模式与治理理念的全方位变革,尤其在政府治理领域,大数据带来了巨大的变革潜力和创新空间。在“全面深化改革,推进国家治理体系和治理能力现代化”的时代背景下,应充分重视大数据在政府治理中的重要价值,牢牢抓住大数据为政府治理提供的创新机遇,切实提高各级政府部门的治理能力。
一、大数据为政府治理理念转型带来新机遇
治理理念的转型是提升政府治理能力的前提,理念的转型需要新文化、新思维的融入,大数据所蕴含的数据文化与数据思维恰好可以为治理理念转型提供突破口,基于大数据探索政府治理的多元、多层、多角度特征,最终实现以政府为主体的政府管制理念向以协同共治、公共服务为导向的政府治理理念的转型。在大数据时代,政府治理的依据不再是个人经验和长官意志,而是实实在在的数据,在过去深入群众、实地调研考察的基础上,系统采集的客观数据和实证分析的科学结果将成为最为重要的政府决策依据。“尊重事实、推崇理性、强调精确”的特征和“用数据说话、用数据决策、用数据管理、用数据创新”的理念将成为政府治理理念转型的核心要义。
二、大数据为政府治理模式创新带来新机遇
大数据通过把数学算法运用于海量数据,从数据中寻找相关关系,通过这种相关性预测事情发生的可能性,这是大数据方法论的核心思想。此外,依托于大数据技术和平台,通过外包、众包等灵活的组织方式,可以推动政府治理的组织架构从科层、分割、封闭向开放、协同、合作转型,因此把大数据的方法和手段引入到政府治理领域,是实现政府治理模式创新的有效路径。基于上述方法论,大数据为政府治理模式创新带来的新机遇主要包括:从粗放式管理到精细化治理、从单兵作战型管理到协作共享型治理、从被动响应型管理到主动预见型治理、从电子政务管理到政府2.0治理、从风险隐蔽型管理到风险防范型治理,最终实现全面数据驱动的治理模式创新。
三、大数据为政府决策科学化带来新机遇
随着公共事务的日益复杂,仅凭个人感知已经很难全面了解所有正在发生的事情并做出正确判断,政府部门想要提高决策的科学性,就需要把大数据思维与技术运用到政府治理与决策中,依靠大规模数据的收集来直观呈现经济社会运行规律,通过相应的数据挖掘来辅助政府部门进行科学决策。大数据为政府决策科学化带来的机遇主要体现在两个方面:首先,在决策的制定阶段,大数据背景下,政府决策不再是个别领导干部“拍脑袋”做出的,而是通过“用数据说话”,让听得见炮火的人(数据)做出决策,这样的政府决策是在对客观数据进行科学分析、充分了解客观现实的基础上做出的,这样大大提高了决策的精准性、适用性和科学化水平;其次,在决策实施效果的跟踪反馈阶段,通过物联网和社交网络的普及,大量的客观数据能够快速汇集给决策者,通过这些数据对决策的实施过程和效果进行实时监控,能够更全面地掌握决策的实施效果和下一步的改进方向。
四、大数据为政府服务效能提升带来新机遇
提升政府服务效能是政府治理能力提升的重要支撑,也是大数据背景下服务型政府建设的关键所在,在政府治理的范畴下,提升政府服务效能主要包括政府部门行政审批的效率提升和公共服务产品的质量提高两个方面。在提升行政审批效率方面,大数据可以打通各个政府部门的信息孤岛,打破各部门数据的条块分割,通过构建统一的政府行政审批云平台,让数据为老百姓“跑腿办事”,省去了“跑断腿、磨破嘴,办事跑十几个部门,盖几十个公章”的苦恼和无奈,这样既提高了行政审批效率,又节约了政府开支。在提高公共服务产品质量方面,大数据通过对公共服务产品数据和服务对象数据的挖掘、分析,提升公共服务产品供给的精准化、分层化、个性化;通过公共数据的开放和兼容,让公众参与到公共服务产品设计、提供和监督等各个环节,实现公共服务产品质量的提高。
㈡ 如何通过大数据提高工作效率
主要有以下几种方法吧:
学会用数据分析和判断问题
给自己制定短期和长期的目标,并尽量详细
工作要把握好重点,分清主要问题和次要问题
要不断观察行业发展的动态
定期调整自己的工作
要不断的创新,善于思考,打破传统的思维方式等
㈢ 如何运用大数据提升公司业绩
大数据能够帮助企业预测经济形势、把握市场态势、了解消费需求、提高研发效率,不仅具有巨大的潜在商业价值,而且为企业提升竞争力提供了新思路。企业怎样利用大数据提升竞争力?乐思认为这里从企业决策、成本控制、服务体系、产品研发四个方面加以简要讨论。
企业决策大数据化。现代企业大都具备决策支持系统,以辅助决策。但现行的决策支持系统仅搜集部分重点数据,数据量小、数据面窄。企业决策大数据化的基础是企业信息数字化,重点是数据的整理分析。首先,企业需要进行信息数字化采集系统的更新升级。按各决策层级的功能建立数据采集系统,以横向、纵向、实时三维模式广泛采集数据。其次,企业需要推进决策权力分散化、前端化、自动化。对多维度的数据进行提炼整合,在人为影响起主要作用的顶层,提高决策指标信息含量和科学性;在人为影响起次要作用的底层,推进决策指标量化,完善决策支持系统和决策机制。大数据决策机制让数据说话,可以减少人为干扰因素,提高决策精准度。
成本控制大数据化。目前,很多企业在采购、物流、储存、生产、销售等环节引入了成本控制系统,但系统间融合度较低。企业可对现有成本控制系统进行改造升级,打造大数据综合成本控制系统。其一,在成本控制的全过程采集数据,以求最大限度地描述事物,实现信息数字化、数据大量化。其二,推进成本控制标准、控制机理系统化。量化指标,实现成本控制自动化,减少人为因素干扰;细化指标,以获取更精确的数据。其三,构建综合成本控制系统,将成本控制所涉及的从原材料采购到产品生产、运输、储存、销售等环节有机结合起来,形成一个综合评价体系,为成本控制提供可靠依据。成本控制大数据化以预先控制为主、过程控制为中、产后控制为辅的方式,可以最大限度降低企业运营成本。
服务体系大数据化。品牌和服务是企业的核心竞争力,服务体系直接影响企业的生存发展。优化服务体系的重点是健全沟通机制、联络机制和反馈机制,利用大数据优化服务体系的关键是找到服务体系中存在的问题。首先,加强数据收集,对消费者反馈的信息进行分类分析,找到服务体系的问题,然后对症下药,建立高效服务机制,提高服务效率。其次,将服务方案移到线上,打造自动化服务系统。快速分析、比对消费者服务需求信息,比对成功则自动进入服务程序,实现快速处理;比对失败则转入人工服务系统,对新服务需求进行研究处理,并快速将新服务机制添加至系统,优化服务系统。服务体系大数据化,可以实现服务体系的高度自动化,最大程度提高服务质量和效率。
产品研发大数据化。产品研发存在较高风险。大数据能精确分析客户需求,降低风险,提高研发成功率。产品研发的主要环节是消费需求分析,产品研发大数据化的关键环节是数据收集、分类整理和分析利用。企业官网的消费者反馈系统、贴吧、论坛、新闻评价体系等是消费者需求信息的主要来源,应注重从中收集数据。同时,可与论坛、贴吧、新闻评价体系合作构建消费者综合服务系统,完善消费者信息反馈机制,实现信息收集大量化、全面化、自动化,为产品研发提供信息源。然后,对收集的非结构化数据进行分类整理,以达到精确分析消费需求、缩短产品研发周期、提高研发效率的目的。产品研发大数据化,可以精准分析消费者需求,提高产品研发质量和效率,使企业在竞争中占据优势。
㈣ 面对BIM和互联网+ 建筑业大数据怎么玩儿
日前,国务院颁发《关于运用大数据加强对市场主体服务和监管的若干意见》,为已身处BIM和“互联网+”浪潮的建筑行业信息化变革提供挑战和契机。
面对大数据时代的凶猛来袭,对已经身处BIM和“互联网+”浪潮的建筑行业而言,如何处理和用好海量的工程相关数据,是实现信息化变革的最关键因素。日前,国务院发布《关于运用大数据加强对市场主体服务和监管的若干意见》(下称《意见》),正式吹响大数据应用号角。
行业大数据壁垒待破
《意见》提出,要进一步健全创新体系,鼓励相关企业、高校和科研机构开展产学研合作,推进大数据协同融合创新,加快突破大规模数据仓库、非关系型数据库、数据挖掘、数据智能分析、数据可视化等大数据关键共性技术,支持企事业单位开展大数据公共技术服务平台建设。
建筑行业是我国的支柱产业,建筑全生命周期内会产生海量数据。2014年,我国在建项目达60余万个,其中房屋新开工面积18亿平方米,而每个项目都会涉及建设方、总包方、分包方、材料设备厂商、劳务公司、设计院、监理方、政府部门等,在此过程中会产生大量数据。有公开资料显示,平均每个建筑生命周期大约产生10T级别数据,相当于630万部《红楼梦》。
在从事工程项目管理多年的国有建筑企业某负责人看来,现阶段建筑企业还缺乏对信息化的有效应用,无法通过传统方法管理海量工程数据,从而实现精细化管理。管理的支撑是数据,项目管理的基础就是工程基础数据的管理,及时、准确地获取相关工程数据就是项目管理的核心竞争力。建筑行业大数据应用和BIM普及的核心,是基于企业核心数据的积累、存储和管理。
“现在很多国外公司想进入国内做建筑行业信息化,目前国内做得很有规模、很深入的公司也比较少,但很多企业都想借大数据和云计算这些新技术变革的机会努力做一些创新。”有行业分析师表示。
据分析认为,对于建筑行业的大数据挖掘来说,存在天然的行业壁垒。“首先是数据维度比较复杂,简单来看,既有建筑类数据,如建筑造价类数据、建筑结构类数据、建筑施工工艺类数据、建筑材料类数据,也有管理类数据;其次是我国的建筑法律法规和对专业的要求与国外不一样,各省市的建筑行业法律法规都不一样。在这种情况下,建筑行业的大数据挖掘成了一个高门槛行业。”他说。
信息增值改变行业“玩儿法”
虽然入门很难,但是大数据对建筑行业的改变非常大。《意见》也指出,要充分认识运用大数据加强对市场主体服务和监管的重要性。
以传统的工程造价咨询公司为例,拥有100个造价人员的公司至少会有两个人专门做询价,即找材料价格,而一个咨询师的年成本约30万元,两个人就是60万元。从收集材料厂商数据的成本来看,收集一个厂商的信息,大约一年需要140元,而目前国内的建筑材料生产厂商有约79万家,要把这79万家的材料信息收集回来,成本是非常高的。
“所以针对这一情况,我们努力做的事情就是把这些生产厂商的数据收集回来,结合一系列机器学习、数学建模、自然语言处理、搜索引擎等技术,把信息精细加工以后,提供给用户。这既可以节省很多人力成本,也可以在做招标、投标和审核时的预算中直接载入做过精加工的数据,方便进行各种调度。”大数据专家付永晖说。
工程造价信息化是行业趋势,企业数据库建设就是排头兵。有业内专家指出,通过BIM可以更好地处理造价管理工作,“多、快、好、省、准、全”地获取材价数据,构建企业核心数据库并进行有效管理。“这些都是工程造价行业从业者每天都要面对的问题,以前他们需要通过大量时间与人脉积累,去了解庞杂的产品造价和工程管理信息,而BIM和‘互联网+’能将一切都整合到网上,实现阳光、透明的采购流程,更好地搭建核心材价数据库、指标数据库、项目数据库、供应商数据库等。”他说。
据介绍,基于互联网的信息增值服务改变了行业玩法。这种信息化、扁平化、互动化、可视化、精细化的增值服务,延伸了工程项目预决算管理的产业链,提升了建筑行业的产业链价值,呈现出新常态背景下从要素驱动、投资拉动向创新驱动、服务带动转变的特征。
信用建设必须以大数据为支撑
《意见》提出,要运用大数据加强和改进市场监管。建立国家统一的信用信息共享交换平台,整合金融、安全生产、质量监管等领域信用信息,实现各地区、各部门信用信息共建共享。充分发挥行政、司法、金融、社会等领域的综合监管效能,在招标投标、国有土地出让、企业上市、劳动用工、环境保护等方面,建立跨部门联动响应和失信约束机制。
事实上,去年发布的《关于推进建筑业发展和改革的若干意见》已经明确,要探索开展工程建设企业和从业人员的建筑市场和质量安全行为评价办法,逐步建立“守信激励、失信惩戒”的建筑市场信用环境。鼓励有条件的地区研究、试行开展社会信用评价,引导建设单位等市场各方主体通过市场化运作综合运用信用评价结果。国家发改委副主任连维良曾表示,信用建设必须以大数据为支撑,以大数据为支撑的信用建设手段,对于加强对市场主体的服务和监管具有非常重要的作用。
据了解到,浙江、湖南、安徽、山东等多地已建立或筹建工程建设信用大数据平台、建筑市场数据库等,并定期发布失信违约“黑名单”。我国建筑市场中各方主体普遍存在信用缺失情况,诚信“短板”问题突出。一些企业不按工程建设程序办事,或违法转包工程,或关键技术岗位人员不到岗履职,或在施工中偷工减料,导致质量问题和安全隐患等。而通过大数据平台动态记录信息,通过建筑市场管理和施工现场监管有效联动,有助于更好地实现“数据一个库、监管一张网、管理一条线”。
㈤ 如何进行大数据营销
可穿戴的大数据
看看可穿戴技术,会认为这是便捷的下一步发展。但对于现代的企业主来讲,这是大数据成就的一个典型的例子。从一个智能手表收集的数据可以允许企业不仅知道你的习惯和你频繁去的地方,还有哪些特性更吸引你以及不怎么使用,这些都是他们可以用来分析的数据,来提高你的总体体验,还可以大胆预测哪些趋势和品味可以引领你,这样他们就可以在一个不相关的领域提供最好的服务。企业提供自己的品牌的可穿戴产品或更简单的设计不仅在可穿戴式产品的炒作,还可以充分和创造性的利用大数据的提供信息。
不管是大方向还是小方面,年轻的企业家都正在调整大数据运行的方式,以及大数据收集和使用的方法。随着如云端服务这样的技术的出现来帮助其前进与发展,可以公正地说,大数据的使用是越来越有创造力。
㈥ 怎样用好大数据
秘诀一:目标要明确
就算一个公司拥有再多的数据,也不能代表它就一定会获得商业上的成功。只有真正懂得如何利用大数据,了解到公司利用大数据可以达到什么目标,公司最终才有可能真正成功。在公司在发展过程中往往也会面临诸多选择,也只有目标设定明确了,才能够缩小选择范围聚焦精力去发展。企业应时刻保持头脑清醒,朝着自己定好的目标前进,才有助于公司进行持续长久的良好运作。
秘诀二:要区分清楚“森林”和“树”
现在,企业可以做到一些他们以往没有能力做到的事。对于很多公司来说,可供分析的数据更多,可以用来分析数据的工具和方法也比以前更先进方便。公司已经完全有能力去分析和处理他们收集到的大量数据,这对于企业来说或许是件好事,然而,有时候这些数据也会过于分散。
秘诀三:做好团队的协调
在大数据的世界里,最有价值和作用的数据往往十分稀少。要想找到真正有价值的数据,就如同大海捞针一样困难。所以,为了找到这些有价值的数据,企业内部应齐心协力通力合作,要经常保持有效的沟通和协作。
秘诀四:用机器代替人工
机器学习指计算机模拟或实现人类的学习行为,以获取新的知识或技能,从而对自身功能进行改进。机器学习相比人工学习,速度更快,学习规模也更大,一个公司能通过机器学习较快地发现新的问题。
秘诀五:要谨慎对待数据
有时,企业是没有能力去获取数据的,也就没法用数据去解决问题。就算公司获得了一些数据,他们往往也不清楚这些数据最终能否解决他们的问题。
㈦ 大数据时代创新创业的三个方向和四大挑战
大数据时代创新创业的三个方向和四大挑战
大数据时代创新创业的三个方向和四大挑战【导语】从传统互联网的人机互联,人人互联,到工业互联网的物物互联,人机物三种端各自互联,才带来大数据的产生,利用云进行大数据的存储和计算,实现数据的融合和服务,数据从哪里来,到哪里去,数据如何关联,如何找到市场需求实现价值是关键。数据采集加工的跑马圈地已入中盘,数据分析与应用的商业模式才刚刚开盘,而这需要模式具备可持续性和可扩展性。如今时代变了,以前以企业为核心的理念转向以消费者、以用户为核心的理念,以前的设计在进行创意时以往主要靠拍脑袋决策,如今需要数据的支持和支撑来指导创意。基于大数据的创新创业面临的挑战,主要有四个方面:一是拿到可以利用的数据比较难,目前不少创业公司都是基于互联网上公开的数据在进行应用开发。二是大数据应用可能威胁到企业中传统的角色地位甚至生存,这就涉及到与传统利益的冲突,因此大数据应用推广需要一把手牵头推动。第三个瓶颈是人力资源,不管美国还是中国大数据人才非常紧缺,包括数据科学家和数据分析师,这些人才需要高校和企业一起合作来进行培养。
第四关于投资的难度加大,需要有更多大数据商业应用成功的项目和例子来引领投资的方向。
大数据时代创新创业的三个方向和四大挑战
——ADEC联手浙大、五叶草大数空间举办“大数据时代的创新创业实践与思考”研讨会
在大众创新、万众创业的热潮中,基于大数据的创业创新备受关注。12月17日,阿里数据经济研究中心(ADEC)、浙江大学管理学院、五叶草大数空间三者携手合作,邀请20余位浙大学者走入云栖小镇,在杭州这个创新创业的基地,聆听大数据创业创新实践者的感受,共同开展“大数据时代创业创新的实践和思考”的相关话题研讨。
三家大数据创新创业领域的企业数能科技、华院数据和洛可可公司的负责人给大家分享了他们的实践方向、面临挑战以及心得体会。在分享结束后,就大家关注的话题分组讨论的环节受到参会企业以及研究者们的欢迎。
三个方向和四大挑战
浙江大学管理学院教授刘渊老师在分享中提到,从传统互联网的人机互联,人人互联,到工业互联网的物物互联,人机物三种端各自互联,才带来大数据的产生,利用云进行大数据的存储和计算,实现数据的融合和服务,数据从哪里来,到哪里去,数据如何关联,如何找到市场需求实现价值是关键。
图为浙江大学管理学院教授刘渊
以浙江大学郭斌老师为组长的小组认为大数据创新创业的商业模式有三个方向(Analytics , Data, Services ,ADS)值得关注,其中A相当于为企业提供数据的计算分析能力;第二类D是提供数据为主,要做有效的决策背后所使用的数据可能来源于多个数据源,可以集聚数据成为运营的资源;第三类S相当于提供基于数据的服务,这种服务要嵌入到企业运营的业务流程。
以郑刚老师为代表的小组总结了基于大数据的创新创业面临的挑战,主要有以下四个方面:一是拿到可以利用的数据比较难,目前不少创业公司都是基于互联网上公开的数据在进行应用开发,二是大数据应用可能威胁到企业中传统的角色地位甚至生存,这就涉及到与传统利益的冲突,因此大数据应用推广需要一把手牵头推动;第三个瓶颈是人力资源,不管美国还是中国大数据人才非常紧缺,包括数据科学家和数据分析师,这些人才需要高校和企业一起合作来进行培养;第四关于投资的难度加大,需要有更多大数据商业应用成功的项目和例子来引领投资的方向。
大数据创新创业的三个实践
数能科技:数据分析老兵的创业之路
数能科技的总经理张晓明先生在国外有20多年的数据分析的经验,他在分享中谈到,美国的大数据指的是用常规方法无法处理的数据,比如音频、视频等数据,而中国的大数据实际上是大数据+小数据,以电影行业为例,通常都是数据采集后转化为小数据来进行统计分析和数据挖掘。
图为数能科技的总经理张晓明
张总认为,中国发展大数据面临三大挑战:一是数据孤岛现象严重,二是行业知识缺乏,在业务、技术和行政人员三方面沟通比较困难,跨学科的沟通以前比较缺乏,使得整个行业发展在应用层面的发展不快,三是过去中国的发展是粗旷式的,哪有机会往哪跑,现在是精细化管理,进行资源的优化配置,而政府官员对这种需求的优先级不高。
在大数据的商业模式方面,张总认为,数据采集加工的跑马圈地已入中盘,数据分析与应用的商业模式才刚刚开盘,而这需要模式具备可持续性和可扩展性,其中人才也是发展的一个瓶颈,尤其欠缺具备硬实力和软实力的数据分析师,尤其是软实力方面对于理工科学生来说更难,软实力主要指的是沟通、好奇心和业务理解力。
数能科技开发的“电影票房预测”应用和“电影排片宝”应用都是典型的基于数据的新应用,电影票房预测每天早晨9点半会发布当天的票房预测结果,希望成为全国以及各个城市电影票房的预测风向标,为发行人进行精准营销提供依据,“电影排片宝”应用通过收集来自媒体、影院的历史数据、网上售票的预售数据等信息为各大影院排片提供建议。这种应用场景还可以衍生到客流预测与资源优化管理,比如在旅游景点、大型超市等。
华院数据:数据分析人才基地的孵化新模式
国内专业的数据分析挖掘人才有很多都来自于华院数据,来自华院数据的执行总裁麦星在分享“华院数据——产业大数据生态的深度孵化器”的主题时谈到,华院数据目前聚焦是以大数据行业解决方案为核心,基于自己多年的技术积累,提供数据互联、人工智能引擎等核心能力和产品,融入于垂直行业,在各行业孵化出独立、专注、聚焦的大数据子公司。
图为华院数据的执行总裁麦星
目前已经孵化了数云、数创、数尊、华院分析等多家大数据+电商、零售、O2O、运营商的创业公司,这些创业公司形成产业大数据的生态,比如数云科技是电商数据应用的创业公司,为阿里巴巴平台上的商家提供CRM解决方案,连续三年都是金牌淘拍档。
洛可可:传统工业设计公司的大数据创新转向消费者为中心
洛可可作为一家工业设计公司,它所推出的一款55度杯子一上市就备受欢迎,杭州分公司负责人夏治朋在分享时提到,如今时代变了,以前以企业为核心的理念转向以消费者、以用户为核心的理念,以前的设计在进行创意时以往主要靠拍脑袋决策,如今需要数据的支持和支撑来指导创意,而且数据不仅是B端的需求,更重要的需要最终消费者的需求,让创意和设计更加精准。
图为洛可可杭州分公司总经理夏治朋
以前的产品只有功能,现在的产品还要有服务、有情感,产品具备智能的基础需要有大数据,现在的产品大都是软硬件结合的,同时还有app,从而了解用户的行为和习惯,通过App端数据的抓取来获知用户的行为和习惯,从而改变创意和设计,使得用户感知到产品是为之定制的。
大数据的创新创业刚刚开始
在信息经济发展迅猛的今天,随着数据扮演生产要素的角色,云计算发挥公共计算基础设施的作用,数据的开放、共享与流动成为可能,数据的融合激发新的生产力。与以往任何一个时代相比,大数据时代的创业创新将拥有更多的机会、更大的空间。虽然现阶段我国数据相关的法规政策尚不完善,基于数据的创业创新实践尚在探索阶段,业务和服务模式还不成熟,不确定性正意味着更多机会,因此我国不断涌现出企业进行基于大数据的新模式的尝试和探索。阿里数据经济研究中心(ADEC)期待与更多学界研究者进行深入合作,共同推动中国数据经济的良性快速发展。
㈧ 如何利用大数据进行创新
可以利用大数据的多维度和时效性进行创新。用大数据的数据分析结果可以更加精准的了解到目标用户的需求,进而根据目标用户的需求来制定相应的创新方案。
㈨ 如何在大数据时代下培养创新精神
“大数据”时代的来临,对各行业传统管理模式带来了巨大的冲击。以往衡量一个企业的实力,其拥有的资源、财力是最重要的标准,而在“大数据”时代,数据才是王道,才是最重要的资产,才是最被看重的竞争力。然而,传统的管理模式并未适应“大数据”时代的到来,主要表现在以下几个方面。
挑战一:大公司的数据垄断
大数据时代,数据是企业获取竞争优势的基础,全球互联网巨头都已意识到了大数据时代数据的重要意义,谁占有数据,谁就占得先机。例如作为中国最大的电子商务公司,阿里集团目前坐拥支付宝、淘宝、天猫、阿里金融等多个交易平台,其积累的数据达14年之久,利用这些大数据,阿里金融打破了传统的金融模式,使贷款不再需要抵押品和担保,而仅依赖于数据,使企业能够迅速获得所需的资金。这一切源于对数据的垄断,它改变了游戏规则,对传统银行业带来了挑战。
挑战二:决策者未意识到数据的商业价值
在这个数据为王的时代,许多企业决策者的意识还禁锢在传统的管理模式中,企业的信息化管理水平只停留在收发文和电子查询阶段,而大数据分析需要企业在软硬件设备上的大量投入,构建一个复杂的数据分析系统。另外,虽然有些企业拓展了获取数据的渠道,但是却很少深层挖掘数据背后的价值,特别是对系统中的微观数据的关注和利用很少。如今许多的企业决策者们只是单纯的关心像财务报表、企业盈亏表等宏观的数据,并没有从组成这些报表的细微数据中去发现企业存在的问题,对于竞争对手的分析也是如此。
挑战三:信息安全的挑战
“斯诺登”事件和“窃听门”丑闻告诉我们,大数据给企业核心信息的保存带来了技术上的挑战。交易数据和交互数据的产生和传输都是在互联网中进行,这个过程中存在很多客户终端和节点,给数据安全带来了很大的风险。企业为降低成本通常把企业数据存储在云端,云服务商可以看到企业管理和决策的全部数据,商业秘密泄露的风险非常大。另一方面,企业的数据涉及大量用户的隐私信息,包括客户位置、交易历史、个人偏好等信息。这些信息使用不当或者泄露很可能使企业陷入法律纠纷,为企业带来灾难式的不良影响。
㈩ 大数据的核心技术是什么怎么学大数据比较合理
大数据技术的核心技术是:
在大数据产业中,主要的工作环节包括:大数据采集、大数据预处理、大数据存储和管理、大数据分析和大数据显示和应用的挖掘(大数据检索、大数据可视化、大数据应用、大数据安全性等)。)简单地说,三个是数据、数据、数据I.大数据数据的获取和预处理大数据采集一般分为大数据智能传感层,主要包括数据传感系统、网络通信系统、传感适配系统、智能识别系统和软硬件资源访问系统,实现了结构化、半结构化和非结构化海量数据的智能识别、定位、跟踪、接入、传输、信号转换、监控、初步处理和管理等功能。基本支持层:提供虚拟服务器、结构化、半结构化、非结构化数据数据库和物联网资源.大数据预处理:完成接收数据的初步识别、提取、清理等操作。通用相关技术:支持日志系统中各种数据发送者定制的水槽NG实时日志收集系统,用于采集数据,同时简单处理数据,Logstore是开源服务器端数据处理流水线,可以同时从多个源采集数据,数据被转换,然后将数据发送给"存储库";SQOP用于将关系数据库和Hadoop中的数据传送到Hadoop,Hadoop中的数据可以导入到关系数据库中;Zookeeper是提供数据同步服务的分布式、开源分布式应用程序协调服务。
数学知识数学知识是数据分析师的基础知识。对于初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力即可,了解常用统计模型算法则是加分。对于高级数据分析师,统计模型相关知识是必备能力,线性代数(主要是矩阵计算相关知识)最好也有一定的了解。而对于数据挖掘工程师,除了统计学以外,各类算法也需要熟练使用,对数学的要求是最高的。分析工具对于初级数据分析师,玩转Excel是必须的,数据透视表和公式使用必须熟练,VBA是加分。另外,还要学会一个统计分析工具,SPSS作为入门是比较好的。对于高级数据分析师,使用分析工具是核心能力,VBA基本必备,SPSS/SAS/R至少要熟练使用其中之一,其他分析工具(如Matlab)视情况而定。对于数据挖掘工程师……嗯,会用用Excel就行了,主要工作要靠写代码来解决呢。编程语言对于初级数据分析师,会写SQL查询,有需要的话写写Hadoop和Hive查询,基本就OK了。对于高级数据分析师,除了SQL以外,学习Python是很有必要的,用来获取和处理数据都是事半功倍。当然其他编程语言也是可以的。对于数据挖掘工程师,Hadoop得熟悉,Python/Java/C++至少得熟悉一门,Shell得会用……总之编程语言绝对是数据挖掘工程师的最核心能力了。业务理解业务理解说是数据分析师所有工作的基础也不为过,数据的获取方案、指标的选取、乃至最终结论的洞察,都依赖于数据分析师对业务本身的理解。对于初级数据分析师,主要工作是提取数据和做一些简单图表,以及少量的洞察结论,拥有对业务的基本了解就可以。对于高级数据分析师,需要对业务有较为深入的了解,能够基于数据,提炼出有效观点,对实际业务能有所帮助。对于数据挖掘工程师,对业务有基本了解就可以,重点还是需要放在发挥自己的技术能力上。逻辑思维这项能力在我之前的文章中提的比较少,这次单独拿出来说一下。对于初级数据分析师,逻辑思维主要体现在数据分析过程中每一步都有目的性,知道自己需要用什么样的手段,达到什么样的目标。对于高级数据分析师,逻辑思维主要体现在搭建完整有效的分析框架,了解分析对象之间的关联关系,清楚每一个指标变化的前因后果,会给业务带来的影响。对于数据挖掘工程师,逻辑思维除了体现在和业务相关的分析工作上,还包括算法逻辑,程序逻辑等,所以对逻辑思维的要求也是最高的。数据可视化数据可视化说起来很高大上,其实包括的范围很广,做个PPT里边放上数据图表也可以算是数据可视化,所以我认为这是一项普遍需要的能力。对于初级数据分析师,能用Excel和PPT做出基本的图表和报告,能清楚的展示数据,就达到目标了。对于高级数据分析师,需要探寻更好的数据可视化方法,使用更有效的数据可视化工具,根据实际需求做出或简单或复杂,但适合受众观看的数据可视化内容。对于数据挖掘工程师,了解一些数据可视化工具是有必要的,也要根据需求做一些复杂的可视化图表,但通常不需要考虑太多美化的问题。协调沟通对于初级数据分析师,了解业务、寻找数据、讲解报告,都需要和不同部门的人打交道,因此沟通能力很重要。对于高级数据分析师,需要开始独立带项目,或者和产品做一些合作,因此除了沟通能力以外,还需要一些项目协调能力。对于数据挖掘工程师,和人沟通技术方面内容偏多,业务方面相对少一些,对沟通协调的要求也相对低一些。快速学习无论做数据分析的哪个方向,初级还是高级,都需要有快速学习的能力,学业务逻辑、学行业知识、学技术工具、学分析框架……数据分析领域中有学不完的内容,需要大家有一颗时刻不忘学习的心。