当前位置:首页 » 网络资讯 » 怎样加强仓管对数据能力的分析
扩展阅读
哪些网站可以做博客 2025-05-15 02:32:57

怎样加强仓管对数据能力的分析

发布时间: 2023-05-10 17:07:38

㈠ 如何提高收集数据和分析数据的能力

大数据处理关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。

如何从大数据中采集出有用的信息已经是大数据发展的关键因素之一。

想要培养数据分析的能力,可以从两部分来着手:一是数据分析方法论的建立,二是数据分析从入门到精通的知识学习

理论:是进行分析的基础
1)基础的数据分析知识,至少知道如何做趋势分析、比较分析和细分,不然拿到一份数据就无从下手;
2)基础的统计学知识,至少基础的统计量要认识,知道这些统计量的定义和适用条件,统计学方法可以让分析过程更加严谨,结论更有说服力;
3)对数据的兴趣,以及其它的知识多多益善,让分析过程有趣起来。

实践:可以说90%的分析能力都是靠实践培养的
1)明确分析的目的。如果分析前没有明确分析的最终目标,很容易被数据绕进去,最终自己都不知道自己得出的结论到底是用来干嘛的;
2)多结合业务去看数据。数据从业务运营中来,分析当然要回归到业务中去,多熟悉了解业务可以使数据看起来更加透彻;
3)了解数据的定义和获取。最好从数据最初是怎么获取的开始了解,当然指标的统计逻辑和规则是必须熟记于心的,不然很容易就被数据给坑了;
4)最后就是不断地看数据、分析数据,这是个必经的过程,往往一个工作经验丰富的非数据分析的运营人员要比刚进来不久的数据分析师对数据的了解要深入得多,就是这个原因。

也可以采用第三方的大数据服务平台,观向数据是一款整体的数据采集、分析、可视化系统,可以帮助企业品牌发展提供科学化决策。

㈡ 数据分析能力不强,应该通过什么方法加强

数据分析一般不需要编程能力,但是要有编程的逻辑思维能力:
1、要开发数据分析软件以及程序,让岗位人直观看明白的话可以采用编程方式开发出来,这个就要编程能力。
2、懂业务。从事数据分析工作的前提就会需要懂业务,即熟悉行业神滑戚知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。
3、懂管理。一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。
4、懂分析。指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分析。基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。
5、懂工具。指掌握数据分析相关的常用工具。数据分析方法是理论,而数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的数据,我们不能依靠计算器进行分析,必须依靠强大的数据分析工具帮我们完成数据分析工作。
6、懂设计。懂设计是指运用图表有效表达数据分析师的分析观点,使分析结果一目了然。图表的设计是门大学问,如图形的选择、版式的让让设计游陵、颜色的搭配等等,都需要掌握一定的设计原则。
参考链接:http://ke..com/link?url=b8z_U8-QuI49JAGq#3

㈢ 在管理中如何培养数据分析能力

一、熟悉公司业务
首先要熟悉公司业务及流程。若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的实用价值。数据分析的最终目的是作为一种分析方法来为整个项目服务。
二、明确分析目的
常常会有人问这些数据可以做什么分析?这是典型的“为了分析而分析”。数据分析的前提是先明确分析目的,这样的分析才有意义;
三、运用营销、管理等理论
营销、管理等理论是数据分析的指导思想,使分析思路系统化。例如4P理论等,从哪几个维度去信穗戚分析?考虑哪几个方面?只有这样做才能使数据分析变得有血有肉有脉络,真正做到理论指导实践;
四、掌握有效数据分析方法
了解数据分析流程,掌握数据分析基本原理与方法,并灵活运用到实践工作中,不论简单还是复杂的分析方法,只要能解决问题的方法就是好方法;
五、玩转数据分析工具
数据分析工具,建议先玩转excel数据透视表,有兴趣、实践、需要的话,再学习SPSS、SAS等统计分析工具。同样,只要能解决问题的工具就是好工具;
六、学会用图表说话,玩转PPT等工具
学会如何用图表有效展现分析结果,PPT有助于数据分析结果展现,达人必备;水晶易表亦对分析结果的展现有很大帮助,选择性使用;思维导图可帮助理清分析思路,根据需要选用。光做数据分析是不够的,真正要做的是将数据分析结果清晰地展现给其他人看;
七、勤思考、多动手、多总结
需要经常发问为什么是这样的、为什么不是那样的。只有这样勤于思考才有突破点;
光靠脑袋想是不族孙够的,需要多动手实践,不要怕错,大不了错了重来,数据分析就是一个不断假设、验证的过程;
不断总结分析方法、分析思路、分析流程,在总结中前行;
八、关注行业动态
关注数据分析行业动态,积极地学习他人的数据分析经验;
九、收藏几本分析秘籍
可在家中收藏一些使用的分析工具书,以便随时查阅,如《用图表说话》、《excel图表之道》等;滑陵

数据分析不仅是个工具,而且是门艺术,希望能与大家共勉,提高自己的数据分析能力。

㈣ 如何加强数据管理,分析和应用,助推业务发展

底层数据仓库,上层做好数据分析和展示,同时做好数据治理。
最重要的一点,数据管理一定要支撑业务,从业务出发,为业务创造价值,否则业务部门不配合,很难进行下去。比如通过数据仓库提高业务系统的查询效率、通过报表平台让业务部门不再频繁的进行各种报表计算加工等等,从一点点小事做起,让业务部门认识到数据管理可以帮他们减轻负担、提高效率,后面的事情就好办了。
具体应用上,可以采用数据仓库+BI的方式进行,选择好ETL工具,推荐Kettle、HaoheDI做底层ed数据整合。

㈤ 怎样提高数据分析能力

1、数据支持。任何一个企业品牌要想进入大数据营销,首先就要制定一个数据收集和整理的要点,明确大数据技术对于企业品牌的营销发展意义。知道怎样合法的收集轿备到自己需要的数据,以及后续如何处理这些数据,如何通过这些数据来为企业盈利等等。这些基本的定义是企业开展大数据营销的第一步。

2、数据使用工具。如果企业已经做好了大数据营销的准备,并且已经有了自己所需的派帆信数据资源。那么,这时候就需要一定的大数据分析工具了。

3、大数据人才。现在大数据的火爆,自然而然大数据的人才也就十分的稀缺。一个成功的团队离尘轮不开人员的良好配置,大数据人才往往以数据分析人才为主。