当前位置:首页 » 网络资讯 » 大数据怎样解放人
扩展阅读
什么情况可以自动离婚 2025-08-21 01:01:09
哪些网站可以看名师讲课 2025-08-21 00:43:20

大数据怎样解放人

发布时间: 2023-01-22 12:45:31

⑴ 大数据把人类带进怎样的新 解放

随着 社会的 智能化,大数据华,生活网络化, 会让人类的生活变得更安逸!
伴随着 一项项 基于大数据的 人工智能产品上线 人类额生活越来 越简单。
当然也伴随着 更多的失业!~!

⑵ 运用经济生活知识,分析如何让大数据造福人类。

大数据是依托现代信息技术的发展而出现的。
要造福人类,就是要将信息化带动工业化,以工业化促进信息化,走新型工业化道路。这样可以转变经济发展方式,优化产业结构,促进资源利用效率提高,打造环境友好型、资源节约型社会。

⑶ 大数据如何解放组织的创造力

大数据业务通过获取更多具体的、结构化的数据,获得内部及外部的非结构化的数据,获得实时或延时性的数据,将预测性的分析融入关键业务过程中,利用对客户的了解,驱动企业的盈利能力,比如传统的零售业和B2B的中小型企业,在智能化的数据运营中获得客户和企业之间的价值和黏性,帮助客户和企业在互动时做出正确的决策。

⑷ “大数据”怎样改变生活

“大数据”怎样改变生活

大数据,现在越来越成为了一个很时髦的词汇。有人把大数据形容为未来世界的石油,有人宣称掌握大数据的人可以像上帝一样俯瞰整个世界,美国政府甚至已经把对大数据的研究上升为国家战略。日前,由中国科协举办的“科学家与媒体面对面——大数据离我们生活有多远”活动中,有关专家为我们介绍了大数据对未来生活的影响。

我们生活在一个充满“数据”的时代,这里的“数据”,并不仅仅指数字,理论上讲,一切可以以文件形式储存于计算机硬盘的东西,包括数字、文字、图像、声音、视频等,均可称为“数据”。我们打电话,使用微博、QQ、博客等社交工具,都是在不断增加着社会总体数据量。

据权威预测,未来每隔18个月,整个世界的数据总量就会翻倍。IBM的研究称,整个人类文明所获得的全部数据中,有90%是过去两年内产生的。

数据,除了它第一次被使用时提供的价值以外,那些积累下来的数据海洋并不是无用的废物,它还有着无穷无尽的“剩余价值”,关于这一点,人们已经有了越来越多的认识。事实上,大数据已经开始并将继续影响我们的生活,下面我们不妨试举几例。

精准广告投放已很普遍

很多女性可能有这样的经历,使用某浏览器在淘宝、京东等购物网站上购买过一本关于怀孕的书籍后,在之后十个月左右的时间里,你的浏览器两侧的广告栏里不断出现怀孕所需要的东西,如营养食品、对胎儿无影响的孕妇用药、胎心监测仪、体温计、血压计等产品广告,登录原来的购物网站,也会在首页向你推荐这类产品。而且,在十个月之后,你会发现,以上这些广告开始变成婴儿用品了。

你以前可能对浏览器广告非常讨厌,但对这类广告,你却欣然接受,因为它推荐的产品正是你所需要的。这实际上就是大数据应用的一个简单案例。你的浏览经历已经被浏览器和电商所记录,通过对用户浏览记录进行大数据分析,就可以推测出你目前是一种什么状态,今后又将经历哪些状态,于是,专为你定制的广告就在你需要的时候出现在你的眼前。

大数据最本质的应用就在于预测,即从海量数据中分析出一定的特征,进而预测未来可能会发生什么。实际上,上述例子仅仅是大数据应用的最初级阶段。因为它所涉及的数据的范围并不广泛,其分析原理也非常简单。而如前言所述,大数据有数据量大、数据多样性等特征,实际是将各个维度的数据进行综合分析进而进行一定的预测。当不同的数据流被整合到大型数据库中后,预测的广度和精度都会大规模的提高。例如,当一个数据库从不同的数据来源获得了你使用手机的时间和地点、信用卡购物、银行卡电子收费系统、使用QQ等聊天工具的对象、你的QQ好友关系图、你在新浪微博、腾讯微博的收听及被收听关系图谱、你交纳的水、电、燃气费等各方面的数据,数据分析师就能通过匹配获得你生活的不同侧面。通过大数据,数据分析可以发现各种各样的关联。通过分析,可以发现你多方面的需求,并不仅仅是诸如怀孕书籍和尿不湿之间的简单关联了。在数据足够“大”的情况下,你生活中几乎所有的需求都可能会被预测出来。例如,从数据分析出你可能会约会,于是会向你推荐衣服;从数据推测出你会出去旅游,于是向你推荐相关装备及旅行方式等。

医疗卫生体系会更加精密

通过分析大量用户的搜索记录,比如“咳嗽”、“发烧”等特定词条,谷歌公司能准确预测美国冬季流感传播趋势。和官方机构相比,谷歌能提前一两周预测流感爆发,预测结果与官方数据的相关性高达97%。2009年,在甲型H1N1流感爆发的几周前,谷歌的工程师们公开发表了一篇论文,不仅预测流感即将爆发,并且其预测还精确到美国特定的地区和州。这让人们感到十分震惊。准确预测流感疫情,说起来并不复杂,谷歌一直致力于对用户检索数据的分析。用户求医问药等搜索数据可谓海量,把这些数据再拿来与美国疾控中心往年记录的实际流感病例信息相比对,就帮助谷歌作出了准确预测。

在日本也有相似的应用,日本国内有一个网站,你只要打开这个网站用自己的社交网站账号登录,就可以在短时间内通过数万条社交网站记录找出可能感冒的人,并通过过去的感冒情况和今日的感冒情况进行分析,另外该程序还会结合气温和湿度的变化来预测将来感冒的流行情况,并制作一个“易感冒日历”。目前,此类服务正在日本陆续展开。

对个体而言,大数据可以为个人提供个性化的医疗服务。过去我们去看病,医生只能对我们的当下身体情况做出判断,而在大数据的帮助下,将来的诊疗可以对一个患者的累计历史数据进行分析,并结合遗传变异、对特定疾病的易感性和对特殊药物的反应等关系,实现个性化的医疗。还可以在患者发生疾病症状前,提供早期的检测和诊断。早期发现和治疗可以显着降低肺癌给卫生系统造成的负担,因为早期的手术费用是后期治疗费用的一半。

个性化教育可能真正实现

在传统教育模式下,分数就是一切,一个班上几十个人,使用同样的教材,同一个老师上课,课后布置同样的作业。然而,学生是千差万别的,在这个模式下,不可能真正做到“因材施教”。

举例来说,一个学生考试得了88分,这个分数仅仅是一个数字,它能代表什么呢?88分背后是家庭背景、努力程度、学习态度、智力水平等,把它们和88分联系在一起,这就成了“数据”。大数据因其数据来源的广度,有能力去关注每一个个体学生的微观表现——他在什么时候开始看书,在什么样的讲课方式下效果最好,在什么时候学习什么科目效果最好,在不同类型的题目上停留多久等等。这些数据对其他个体都没有意义,是高度个性化表现特征的体现。同时,这些数据的产生完全是过程性的:课堂的过程,作业的过程,师生或同学的互动过程……而最有价值的是,这些数据完全是在学生不自知的情况下被观察、收集的,只需要一定的观测技术与设备的辅助,而不影响学生任何的日常学习与生活,因此它的采集也非常的自然、真实。

在大数据的支持下,教育将呈现另外的特征:弹性学制、个性化辅导、社区和家庭学习、每个人的成功……大数据支撑下的教育,就是要根据每一个人的特点,解放每一个人本来就有的学习能力和天分。

个人隐私保护 一道能迈过的坎

看了前面这些,读者可能要担心了,大数据包含有包罗万象的数据,其中不少数据涉及个人的职位、年龄、身体状况、消费水平、旅行习惯等隐私,那么,在大数据时代,个人隐私能够得到保护吗?答案是,只要国家相关部门实时推进隐私保护,企业主动落实隐私保护责任,大数据产业在飞速发展的同时并不会对民众隐私产生威胁。

在大数据产业中,有两个基本的作法,一是符号化。符号化是指识别用户的时候,识别的仅仅是一个“符号”,这个符号与真实信息并不相关,系统通过一定的算法能够知道多次登录的是同一个用户,但并没有办法反推出这个人是谁,因此,电话、住址等信息都没法与本人关联起来。二是用户特征。用户特征意味着在大数据时代企业感兴趣的往往是这个用户的特征,而不是家庭地址、电话号码等真正敏感的信息。例如,系统需要了解本科以上学历、月收入10000元以上、已婚等这样一个群体,只需要找出符合这些特征的人的特性,并不关心这个人是谁。这样也不会造成隐私的泄露。

当然,这些原则性问题有赖于政府推动、企业自律。但我们相信,为大数据产业的健康发展,相关部门,相关企业一定会高度重视这一问题。

以上是小编为大家分享的关于“大数据”怎样改变生活的相关内容,更多信息可以关注环球青藤分享更多干货

⑸ 大数据都体现在哪些方面

在过去几年,大数据的建设主要集中在物联网、云计算、移动互联网等基础领域,一些大数据起步较早、积累较深的行业领域,开始基于大数据的基础建设,开启了行业数据应用与价值挖掘之路。从数据的抽取、清洗等预处理,到数据存储及管理,再到数据分析挖掘,以及最终的可视化呈现。行业用户开始把注意力转向大数据真正的价值点——发现规律,提升决策效率与能力。这一年,他们在收集数据上花费的时间很少,而在实际分析数据并回答各种问题上的时间则越来越多。
目前进入大数据应用相对较成熟的领域主要在公安、交通、电力、园区管理、网络安全、航天等。大数据价值被挖掘,帮助各行业从业务管理、事前预警、事中指挥调度、事后分析研判等多个方面提升智能化决策能力。
公安领域的大数据应用,可以实现从警综、警力、警情、人口、卡口/车辆、重点场所、摄像头管理等全方位进行公安日常监测与协调管理;实现突发事件下的可视化接处警、警情查询监控、辖区定位、应急指挥调度管理,满足公安行业平急结合的应用需求。
从而全面提升公安机关智能化决策能力,提升警务资源利用和服务价值,为预防打击违法犯罪、维护社会稳定提供有力支持。
交通领域的大数据应用,可以实现从公交车辆、司乘人员、运行线路、站点场站管理、乘客统计等多个维度进行日常路网运行监测与协调管理;支持突发事件下的值班接警、信息处理发布、应急指挥调度管理,发挥交通资源最大效益
电力领域的大数据应用,可以实现用户分布、节点负荷、电网拓扑、电能质量、窃电嫌疑、安全防御、能源消耗等智能电网多个环节进行日常运行监测与协调管理;满足常态下电网信息的实时监测监管、应急态下协同处置指挥调度的需要。全面提高电力行业管理的及时性和准确性,更好地实现电网安全、可靠、经济、高效运行。
园区管理的大数据应用,可以实现从园区建设规划、管网运行、能耗监测、园区交通、安防管理、园区资源管理等多个维度进行日常运行监测与协调管理;从而全面加强园区创新、服务和管理能力,促进园区产业升级、提升园区企业竞争力。
网络安全的大数据应用,能够实现对网络中的安全设备、网络设备、应用系统、操作系统等整体环境进行安全状态监测,帮助用户快速掌握网络状况,识别网络异常、入侵,把握网络安全事件发展趋势,全方位感知网络安全态势。
航天是大数据应用最早也最成熟,取得成果最多的领域,航天要对尺度远比地球大无数倍的广阔空间进行探索,其总量更多,要求更高。因此,航天大数据不仅具有一般大数据的特点,更要求高可靠性和高价值。能够实现对航天测发、测控设备控制;航天指挥作战体系模拟推演、作战评估;航天作战指挥显示控制航天器数据分析、状态监控。

⑹ 如何运用大数据思维做好舆论引导

优化大数据技术支撑平台
加强与科研院所的合作,进一步研发大数据深度挖掘、存储、计算和分析的关键技术,研发补充多种类型的业务功能模块,不断优化网络舆情信息处理技术平台支撑功能,加大舆情计算分析能力,将其打造为络舆情大数据处理中央平台。
引进培养大数据技术人才
系统梳理网络舆情工作所需技术人才目录,通过招考、聘用等方式,引进亟需数据挖掘、分析人才;通过委托高校培养等方式,培养已有专业技术人才;通过购买服务的方式,短期租赁高精尖大数据技术人才为我所用,不断健全大数据技术人才体系。
研究制定舆情量化指标体系
组织专门课题组,与舆情专业机构合作,以历史积累的舆情案例为素材,系统梳理网络舆论引导业务流程,建立可供量化的舆情指标体系,将网民情绪变化、社会关系、意见倾向、意见影响力等定性内容纳入指标体系,并不断完善。细分舆情类别,有针对性地构建舆情预测模型,按照量化指标体系标准全面计算分析舆情内容,有效预测突发网络舆情发生。
拓宽大数据挖掘获取渠道
在加快研发数据挖掘技术同时,加大与人民网、新浪、腾讯、网络、凤凰网等主要网站的合作,通过合作模式获取后台关键数据。健全网络舆情信息历史数据沉淀机制,将重要关键的网络舆情数据归类存储,运用大数据技术进行多次价值开发。建立健全全市大舆情工作机制,制定舆情大数据工作体系,完善市级部门、区(市)县、媒体、社会举报、民意调查、社保、社会信用、工商等舆情数据获取方式,拓宽大数据获取的渠道。
再造舆论引导业务流程
按照大数据业务需求,再造网络舆情监测、引导、处置等舆论引导业务流程,以全程化、全员化、全媒化和规范化的思路,实现网络舆情预测和网络舆论引导前置。
面对越来越繁重的网络舆论引导任务,仍然固守以往传统工作方式将愈来愈力不从心。但完全寄希望于大数据技术来实现对网上舆论的管控,解放人的辛苦劳动无疑将是天方夜谭。总而言之,大数据技术是人发明的,它只是个手段,永远不能离不开人的把控和分析。

⑺ 大数据究竟给人们带来了哪些便利

大数据时代至少给我们的生活带来了以下六点便利与好处:

1、节约时间,更有效率

2、大数据让人们更容易借到钱 让老赖无处遁形。

3、大数据让人更加聪明更智慧。

4、大数据思维可以帮你省钱。

5、大数据让工作可以量化,更加公平。

6、大数据思维可以助你发现隐形需求

大数据时代的到来,带来的变化和变革无法量化,只能从大的方面去看了。一个时代会因为一个概念的提出而颠覆,大数据时代,等待颠覆的,还有很多。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。同样,设备管理也将面对着这样的挑战和机遇,我们会在设备管理工作中通过从信息到数据再由数据到有用信息的分析而获得知识、商机和为社会服务的更高层次的能力。

⑻ 什么是大数据有什么意义

"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。 "大数据"首先是指数据体量(volumes)?大,指代大型数据集,一般在10TB?规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。接着是数据处理速度(Velocity)快,在数据量非常庞大的情况下,也能够做到数据的实时处理。最后一个特点是指数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。
数据采集:ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
数据存取:关系数据库、NOSQL、SQL等。
基础架构:云存储、分布式文件存储等。
数据处理:自然语言处理(NLP,NaturalLanguageProcessing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机"理解"自然语言,所以自然语言处理又叫做自然语言理解(NLU,NaturalLanguage Understanding),也称为计算语言学(Computational Linguistics。一方面它是语言信息处理的一个分支,另一方面它是人工智能(AI, Artificial Intelligence)的核心课题之一。
统计分析:假设检验、显着性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。
数据挖掘:分类 (Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)
模型预测:预测模型、机器学习、建模仿真。
结果呈现:云计算、标签云、关系图等。
要理解大数据这一概念,首先要从"大"入手,"大"是指数据规模,大数据一般指在10TB(1TB=1024GB)规模以上的数据量。大数据同过去的海量数据有所区别,其基本特征可以用4个V来总结(Vol-ume、Variety、Value和Veloc-ity),即体量大、多样性、价值密度低、速度快。

第一,数据体量巨大。从TB级别,跃升到PB级别。
第二,数据类型繁多,如前文提到的网络日志、视频、图片、地理位置信息,等等。
第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。
第四,处理速度快。1秒定律。最后这一点也是和传统的数据挖掘技术有着本质的不同。物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。

大数据技术是指从各种各样类型的巨量数据中,快速获得有价值信息的技术。解决大数据问题的核心是大数据技术。目前所说的"大数据"不仅指数据本身的规模,也包括采集数据的工具、平台和数据分析系统。大数据研发目的是发展大数据技术并将其应用到相关领域,通过解决巨量数据处理问题促进其突破性发展。因此,大数据时代带来的挑战不仅体现在如何处理巨量 收起

⑼ 人工智能主要应用在哪些方面,到底会不会“解放”人类

自从谷歌的人工智能机器人阿法狗战胜了李世石和二代“阿法狗”Master在腾讯围棋中横扫中国棋手,实现了60连胜的局面,逐渐人工智能这样技术渐渐的走进人类的视野。到底人工智能是什么主要包括哪些核心的技术,这些智能的机器会不会“解放”人类?今天小禅逐步给大家揭晓。

人类不必忧虑,但是也不能懈怠了。毕竟重复的劳动未来将部分会被机器人所取代。人类还能做什么?是啊,这是一个值得人类思考的问题。人需要做创作、创造性劳动,需要灵感的劳动。毕竟学习已经有的知识和数据,计算机比人类强很多。这也启示人类,未来的教育方向应该是引导学生解决问题、创造创新,不能仅仅的盯在已经写在书本上的“历史知识”。毕竟这些知识已经是事实,无需重复性的验证学习,仅仅在需要用的时候知道如何应用才是王道。本文仅仅代表个人观点,如有疑问,欢迎评论。

⑽ 大数据风控是什么

大数据风控指的就是大数据风险控制,是指通过运用大数据构建模型的方法进行风险控制和风险提示。通过采集大量企业或个人的各项指标进行数据建模的大数据风控更为科学有效。