㈠ python把爬到的数据放到数据库(python爬虫怎么把爬的数据写进文件里)
MySQL
是一个关系型数据库管理系统,由瑞典MySQLAB公司开发,目前属于Oracle旗下产品。MySQL是最流行的关系型数据库管理系统之一,在WEB应用方面,MySQL是最好的RDBMS(,关系数据库管理系统)应用软件。
MySQL是一种关系数据库管理系统,关系数据库将数据保存在不同的表中,而不是将所有数据放在一个大仓库内,这样就增加了速度并提高了灵活性。
MySQL所使用的SQL语言是用于访问数据库的最常用标准化语言。MySQL软件采用了双授权政策,分为社区版和商业版,由于其体积小、速度快、总体拥有成本低,尤其是开放源码这一特点,一般中小型网站的开发都选择MySQL作为网站数据库。
相关推荐:《Python基础教程》
应用环境
与其他的大型数据孝中源库例如Oracle、DB2、SQLServer等相比,MySQL自有它的不足之处,但是这丝毫也没有减少它受欢迎的程度。对于一般的个人使用者和中小型企业来说,MySQL提供的功能已经绰绰有余,而且由于MySQL是开放源码软件,因此可以大大降低总体拥有成本。
MongoDB
是一个基于分布式文件存储的数据库。由C语言编写。旨在为WEB应用提供可扩展的高性能数据存储解决方案。
MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富培携,最像关系数据库的。它支持的数据结构非常松散,是类似json的bson格式,因此可以存储比较复杂的数据类型。Mongo最大的特点是它支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可以实现类似关系数据库单表查询的绝大部分功能,而且还支持对数据建立索引。
特点
它的特点是高性能、易部署、易使用,存储数据非常方便。主要功能特性有:
*面向集合存储,易存储对象类型的数据。
mongodb集群参考
*模式自由。
*支持动态查询。
*支持完全索引,包含内部对象。
*支持查询。
*支持复制和故障恢复。
*使用高效的二进制数据存巧态储,包括大型对象(如视频等)。
*自动处理碎片,以支持云计算层次的扩展性。
*支持RUBY,PYTHON,JAVA,C,PHP,C#等多种语言。
*文件存储格式为BSON(一种JSON的扩展)。
*可通过网络访问。
㈡ 2022-04-16 爬虫day4 <解析网页-存储数据>
import requests
import csv
from bs4 import BeautifulSoup
# 设置列表,用以存储每本书籍的信息
data_list = []
# 设置页码 page_number
page_number = 1
# while 循环的条件设置为 page_number 的值是否小于 4
while page_number < 4:
# 设置要请求的网页链接
url = 'https://wp.forchange.cn/resources/page/' + str(page_number)
# 请求网页
books_list_res = requests.get(url)
# 解析请求到的网页内容
bs = BeautifulSoup(books_list_res.text, 'html.parser')
# 搜索网页中所有包含书籍名和书籍链接的 Tag
href_list = bs.find_all('氏陪a', class_='post-title')
# 使用 for 循环遍历搜索结果
for href in href_list:
# 创建字典,用以存储书籍信息
info_dict = {}
# 提取书籍名
info_dict['书名'] = href.text
# 提取书籍链接
book_url = href['href']
# 通过书籍链接请求书籍详情页
book_list_res = requests.get(book_url)
# 解析书籍详宴核御情页的内容
new_bs = BeautifulSoup(book_list_res.text, 'html.parser')
# 搜索网页中所有包含书籍各项信息的 Tag
info_list = new_bs.find('div', class_='res-attrs').find_all('dl')
# 使用 for 循环遍历搜索结果
for info in info_list:
# 提取信息的提示项
key = info.find('dt').text[:-2]
# 提取信息的内容
value = info.find('dd').text
晌岩 # 将信息添加到字典中
info_dict[key] = value
# 打印书籍的信息
print(info_dict)
# 存储每本书籍的信息
data_list.append(info_dict)
# 页码 page_number 自增
page_number += 1
# 新建 csv 文件存储书籍信息
with open('books.csv', 'w') as f:
# 将文件对象转换成 DictWriter 对象
writer = csv.DictWriter(f, fieldnames=['书名', '作者', '出版社', 'ISBN', '页数', '出版年', '定价'])
# 写入表头与数据
writer.writeheader()
writer.writerows(data_list)
“总是觉得想象中的美好生活就要到了,总是期待着
但实际上,现在经历的每一件事、体会的每一种情感,
都是我的生活。”
爬虫好像真的不简单,但还是希望我可以学会!可以靠自己做出一个个小程序!
㈢ 用爬虫从网站爬下的数据怎么存储
显然不能直接储存,你还得解析出自己需要的内容。
比如我爬取某新闻网今日的国内新闻,那么我创建一个实体类,里面有属性:新闻标题,新闻时间,正文等等。解析出你需要的内容,封到实体里面,然后在层直接save到数据库即可
如果你爬下的是整个网页,这个好办,把它当做文件一样,用流操作保存到电脑上即可。缓橘当然保存网页携局会遇到编码问题,这个很棘手辩哪让。
㈣ 爬虫怎么将运行结果保存为txt文件
保存到txt: def writeToTxt(list_name,file_path): try: fp = open(file_path,"w+") for item in list_name: fp.write(str(item)+"\n") ##list中岩穗一项占一行 fp.close() except IOError: print("fail to open file") file_path = '##保存的位置##.txt' writeToTxt(info_stock_information, file_path) 保存到excel: import xlsxwriter workbook = xlsxwriter.Workbook('##新工作表的位置##.xlsx') # 创建一个Excel文件 worksheet = workbook.add_worksheet() # 创建一个工作表粗枯卜对象败桥 worksheet.write(##行##,##列##, ##保存的东西##) # 写入 workbook.close() ##做个好学生,随手关闭excel
㈤ Python爬虫可以爬取什么
Python爬虫可以爬取的东西有很多,Python爬虫怎么学?简单的分析下:
如果你仔细观察,就不难发现,懂爬虫、学习爬虫的人越来越多,一方面,互联网可以获取的数据越来越多,另一方面,像 Python这样的编程语言提供越来越多的优秀工具,让爬虫变得简单、容易上手。
利用爬虫我们可以获取大量的价值数据,从而获得感性认识中不能得到的信息,比如:
知乎:爬取优质答案,为你筛选出各话题下最优质的内容。
淘宝、京东:抓取商品、评论及销量数据,对各种商品及用户的消费场景进行分析。
安居客、链家:抓取房产买卖及租售信息,分析房价变化趋势、做不同区域的房价分析。
拉勾网、智联:爬取各类职位信息,分析各行业人才需求情况及薪资水平。
雪球网:抓取雪球高回报用户的行为,对股票市场进行分析和预测。
爬虫是入门Python最好的方式,没有之一。Python有很多应用的方向,比如后台开发、web开发、科学计算等等,但爬虫对于初学者而言更友好,原理简单,几行代码就能实现基本的爬虫,学习的过程更加平滑,你能体会更大的成就感。
掌握基本的爬虫后,你再去学习Python数据分析、web开发甚至机器学习,都会更得心应手。因为这个过程中,Python基本语法、库的使用,以及如何查找文档你都非常熟悉了。
对于小白来说,爬虫可能是一件非常复杂、技术门槛很高的事情。比如有人认为学爬虫必须精通 Python,然后哼哧哼哧系统学习 Python 的每个知识点,很久之后发现仍然爬不了数据;有的人则认为先要掌握网页的知识,遂开始 HTMLCSS,结果入了前端的坑,瘁……
但掌握正确的方法,在短时间内做到能够爬取主流网站的数据,其实非常容易实现,但建议你从一开始就要有一个具体的目标。
在目标的驱动下,你的学习才会更加精准和高效。那些所有你认为必须的前置知识,都是可以在完成目标的过程中学到的。这里给你一条平滑的、零基础快速入门的学习路径。
1.学习 Python 包并实现基本的爬虫过程
2.了解非结构化数据的存储
3.学习scrapy,搭建工程化爬虫
4.学习数据库知识,应对大规模数据存储与提取
5.掌握各种技巧,应对特殊网站的反爬措施
6.分布式爬虫,实现大规模并发采集,提升效率
一
学习 Python 包并实现基本的爬虫过程
大部分爬虫都是按“发送请求——获得页面——解析页面——抽取并储存内容”这样的流程来进行,这其实也是模拟了我们使用浏览器获取网页信息的过程。
Python中爬虫相关的包很多:urllib、requests、bs4、scrapy、pyspider 等,建议从requests+Xpath 开始,requests 负责连接网站,返回网页,Xpath 用于解析网页,便于抽取数据。
如果你用过 BeautifulSoup,会发现 Xpath 要省事不少,一层一层检查元素代码的工作,全都省略了。这样下来基本套路都差不多,一般的静态网站根本不在话下,豆瓣、糗事网络、腾讯新闻等基本上都可以上手了。
当然如果你需要爬取异步加载的网站,可以学习浏览器抓包分析真实请求或者学习Selenium来实现自动化,这样,知乎、时光网、猫途鹰这些动态的网站也可以迎刃而解。
二
了解非结构化数据的存储
爬回来的数据可以直接用文档形式存在本地,也可以存入数据库中。
开始数据量不大的时候,你可以直接通过 Python 的语法或 pandas 的方法将数据存为csv这样的文件。
当然你可能发现爬回来的数据并不是干净的,可能会有缺失、错误等等,你还需要对数据进行清洗,可以学习 pandas 包的基本用法来做数据的预处理,得到更干净的数据。
三
学习 scrapy,搭建工程化的爬虫
掌握前面的技术一般量级的数据和代码基本没有问题了,但是在遇到非常复杂的情况,可能仍然会力不从心,这个时候,强大的 scrapy 框架就非常有用了。
scrapy 是一个功能非常强大的爬虫框架,它不仅能便捷地构建request,还有强大的 selector 能够方便地解析 response,然而它最让人惊喜的还是它超高的性能,让你可以将爬虫工程化、模块化。
学会 scrapy,你可以自己去搭建一些爬虫框架,你就基本具备爬虫工程师的思维了。
四
学习数据库基础,应对大规模数据存储
爬回来的数据量小的时候,你可以用文档的形式来存储,一旦数据量大了,这就有点行不通了。所以掌握一种数据库是必须的,学习目前比较主流的 MongoDB 就OK。
MongoDB 可以方便你去存储一些非结构化的数据,比如各种评论的文本,图片的链接等等。你也可以利用PyMongo,更方便地在Python中操作MongoDB。
因为这里要用到的数据库知识其实非常简单,主要是数据如何入库、如何进行提取,在需要的时候再学习就行。
五
掌握各种技巧,应对特殊网站的反爬措施
当然,爬虫过程中也会经历一些绝望啊,比如被网站封IP、比如各种奇怪的验证码、userAgent访问限制、各种动态加载等等。
遇到这些反爬虫的手段,当然还需要一些高级的技巧来应对,常规的比如访问频率控制、使用代理IP池、抓包、验证码的OCR处理等等。
往往网站在高效开发和反爬虫之间会偏向前者,这也为爬虫提供了空间,掌握这些应对反爬虫的技巧,绝大部分的网站已经难不到你了.
六
分布式爬虫,实现大规模并发采集
爬取基本数据已经不是问题了,你的瓶颈会集中到爬取海量数据的效率。这个时候,相信你会很自然地接触到一个很厉害的名字:分布式爬虫。
分布式这个东西,听起来很恐怖,但其实就是利用多线程的原理让多个爬虫同时工作,需要你掌握 Scrapy + MongoDB + Redis 这三种工具。
Scrapy 前面我们说过了,用于做基本的页面爬取,MongoDB 用于存储爬取的数据,Redis 则用来存储要爬取的网页队列,也就是任务队列。
所以有些东西看起来很吓人,但其实分解开来,也不过如此。当你能够写分布式的爬虫的时候,那么你可以去尝试打造一些基本的爬虫架构了,实现一些更加自动化的数据获取。
你看,这一条学习路径下来,你已然可以成为老司机了,非常的顺畅。所以在一开始的时候,尽量不要系统地去啃一些东西,找一个实际的项目(开始可以从豆瓣、小猪这种简单的入手),直接开始就好。
因为爬虫这种技术,既不需要你系统地精通一门语言,也不需要多么高深的数据库技术,高效的姿势就是从实际的项目中去学习这些零散的知识点,你能保证每次学到的都是最需要的那部分。
当然唯一麻烦的是,在具体的问题中,如何找到具体需要的那部分学习资源、如何筛选和甄别,是很多初学者面临的一个大问题。
以上就是我的回答,希望对你有所帮助,望采纳。
㈥ 爬虫是什么
爬虫技术是一种自动化程序。
爬虫就是一种可以从网页上抓取数据信息并保存的自动化程序,它的原理就是模拟浏览器发送网络请求,接受请求响应,然后按照一定的规则自动抓取互联网数据。
搜索引擎通过这些爬虫从一个网站爬到另一个网站,跟踪网页中的链接,访问更多的网页,这个过程称为爬行,这些新的网址会被存入数据库等待搜索。简而言之,爬虫就是通过不间断地访问互联网,然后从中获取你指定的信息并返回给你。而我们的互联网上,随时都有无数的爬虫在爬取数据,并返回给使用者。
爬虫技术的功能
1、获取网页
获取网页可以简单理解为向网页的服务器发送网络请求,然后服务器返回给我们网页的源代码,其中通信的底层原理较为复杂,而Python给我们封装好了urllib库和requests库等,这些库可以让我们非常简单的发游冲送各种形式的请求。
2、提取信息
获取到的网页源码内包含了很多信息,想要进提取到我们需要的信息,则需要对源码还要做进一步筛选。可以选用python中的re库即通过正则匹配的形式去提取信息,也可以采用BeautifulSoup库(bs4)等解析源代码,除了有自动编码的优势之外,bs4库还可以结构化输出源卖升代码信息,更易于理解与使用。
3、保存数据
提取到我们需要中磨老的有用信息后,需要在Python中把它们保存下来。可以使用通过内置函数open保存为文本数据,也可以用第三方库保存为其它形式的数据,例如可以通过pandas库保存为常见的xlsx数据,如果有图片等非结构化数据还可以通过pymongo库保存至非结构化数据库中。
㈦ 爬虫都可以干什么
python是一种计算机的编程语言,是这么多计算机编程语言中比较容易学的一种,而且应用也广,这python爬虫是什么意思呢?和IPIDEA全球http去了解一下python爬虫的一些基础知识。
一、python爬虫是什么意思
爬虫:是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本。另外一些不常使用的名字还有蚂蚁、自动索引、模拟程序或者蠕虫。
即:打开一个网页,有个工具,可以把网页上的内容获取下来,存到你想要的地方,这个工具就是爬虫。
Python爬虫架构组成:
1.网页解析器,将一个网页字符串进行解析,可以按照我们的要求来提取出我们有用的信息,也可以根据DOM树的解析方式来解析。
2.URL管理器:包括待爬取的URL地址和已爬取的URL地址,防止重复抓取URL和循环抓取URL,实现URL管理器主要用三种方式,通过内存、数据库、缓存数据库来实现。
3.网页下载器:通过传入一个URL地址来下载网页,将网页转换成一个字符串,网页下载器有urllib2(Python官方基础模块)包括需要登录、代理、和cookie,requests(第三方包)
4.调度器:相当于一台电脑的CPU,主要负责调度URL管理器、下载器、解析器之间的协调工作。
5.应用程序:就是从网页中提取的有用数据组成的一个应用。
二、爬虫怎么抓取数据
1.抓取网页
抓取网页有时候需要模拟浏览器的行为,很多网站对于生硬的爬虫抓取都是封杀的。这是我们需要模拟user agent的行为构造合适的请求,比如模拟用户登陆、模拟session/cookie的存储和设置。
2.抓取后处理
抓取的网页通常需要处理,比如过滤html标签,提取文本等。python的beautifulsoap提供了简洁的文档处理功能,能用极短的代码完成大部分文档的处理。
其实以上功能很多语言和工具都能做,但是用python能够干得最快,最干净。上文介绍了python爬虫的一些基础知识,相信大家对于“python爬虫是什么意思”与“爬虫怎么抓取数据”有一定的的认识了。现在大数据时代,很多学python的时候都是以爬虫入手,学习网络爬虫的人越来越多。通常使用爬虫抓取数据都会遇到IP限制问题,使用高匿代理,可以突破IP限制,帮助爬虫突破网站限制次数。
㈧ 爬取下来的数据选择什么存储方式会更好
如果你是小说站,且文章数量超过几十万那数信敬么用文本存坦或储。。一般来说,文章数量大,且不需要经常生成或者是调薯慎用的话,那么就用文本存储,其实就是text文档存储啦。
㈨ 爬虫解决反爬后怎么存储文件夹
方法如下:
1、使用open方法写入文件保存数据到txt。
2、将上述爬取的列灶春表数据保存到txt文件。
3、保存数据到答辩腔csv,写入列表或者元组数据:创建writer对象,使用writerow写入一行数据,使用writerows方法写入多行数据。
4、将上述清衫爬取到的数据保存到csv文件中即可。
㈩ python爬虫数据存到非本地mysql
pymysql 基本使用 八个步骤以及案例分析
一.导入pymysql模块
导入pymysql之前需要先安装pymysql模块
方法一:直接在pycharm编译器里面输入 pip install pymysql
方法二:win+r --> 输入cmd -->在里面输入差局pip install pymysql
ps:在cmd中输入pip list后回车 可以找到安装的pymysql就表示安装成功了
1
2
3
4
5
6
1
2
3
4
5
6
在pycharm编译器中导入
import pymysql
1
2
1
2
二.获取到database的链接对象
coon = pymysql.connect(host='127.0.0.1', user='root', password='123456', database='pymysql_test')
1
1
user:是你的数据库用户名
password:数据库密码
database:你已经创建好的数据库
1
2
3
1
2
3
三.创建数据表的方法
cursor.execute(
'''create table if not exists pets(id int primary key auto_increment,
src varchar(50),
skill varchar(100)''')
1
2
3
4
1
2
3
4
四.获取执行sql语句的光标对象
cousor = coon.cousor()
1
1
五.定义要执行的sql语句
1.sql的增加数据的方法
sql = '''insert into test_mysql(id,src,skill) values(%d,%s,%s)'''
1
1
ps: test_mysql 是你连接到的数据库中拆世的一张表
id,src,skill 这个是你创建表时所定义的字段关键字
%d,%s,%s 这个要根据你创建的字段关键字的类型而定,记住要一一对应
1
2
3
1
2
3
2.sql的删除数据的方法
sql_1 = '''delete from test_mysql where src=%s;'''
1
1
3.sql的修改数据方法
sql_2 = '''update test_mysql set src=%s where skill=%s;'
1
1
4.sql的查询方法
sql_3 = '''select * from test_mysql where skill = %s'''
1
1
六.通过光标对象执行sql语句
1.执行增加数据的sql语句
cousor.execute(sql, [2, 'www.sohu.com', '000000'])
运行后在旅庆肢mysql的可视化后台就可以直观的添加的数据
1
2
1
2
2.执行删除数据sql语句
new = 'www..com'
cousor.execute(sql_1, [new])
PS:这里就是根据sql语句where后面的条件进行删除对应的数据
要记住传入的数据要与sql的where后面条件匹配
1
2
3
4
1
2
3
4
3.执行修改数据的sql语句
url = 'www..com'
pwd = '666666'
cousor.execute(sql_2,[pwd,url])
1
2
3
1
2
3
4.执行查询数据的sql语句
result1 = cousor.fetchone()
fetchone() 查询=整个表中的第一条数据,
如果再次使用就会查找到第二条数据,
还可以在括号内输入id值查询到相应的数据
result2 = cousor.fetchmany()
fetchmany()查询到表里的多条数据,
在括号里输入几就会查找到表的前几条数据
result2 = cousor.fetchall()
fetchall()查询到sql查询匹配到的所有数据
print(result)
用print输出语句就能直接打印输出所查询到的数据
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
**总结: 在执行sql语句要传入参数时,这个参数要以列表或者元组的类型传入**
1
1
七.关闭光标对象
cousor.close()
1
1
八.关闭数据库的链接对象
coon.cousor()
1
1
九.洛克王国宠物数据抓取案例
import requests
import pymysql
from lxml import etree
from time import sleep
# 数据库链接
conn = pymysql.connect(host='127.0.0.1', user='root', password='123456', database='pymysql')
cursor = conn.cursor()
# 执行一条创建表的操作
cursor.execute(
'''create table if not exists pets(id int primary key auto_increment,name varchar(50),src varchar(100),instry text)''')
url = 'http://news.4399.com/luoke/luokechongwu/'
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/101.0.0.0 Safari/537.36'
}
response = requests.get(url=url, headers=headers)
response.encoding = 'gbk'
html = response.text
# print(html)
# 宠物名称
# 宠物图片(图片在 lz_src)
# 宠物技能(跳转详细页)
tree = etree.HTML(html)
li_list = tree.xpath('//ul[@id="cwdz_list"]/li') # 所有的宠物
for li in li_list:
name = li.xpath('./@name')[0] # 每一个宠物的名称
src = 'http:' + li.xpath('./a/img/@lz_src')[0] # 图片链接
link = 'http://news.4399.com' + li.xpath('./a/@href')[0] # 宠物的详细链接
instry = [] # 数组里面存放每一个对象,每一个对象就是一个技能
# 对详细链接发起请求,获取技能
try:
detail_resp = requests.get(url=link, headers=headers)
sleep(0.5)
detail_resp.encoding = 'gbk'
detail_tree = etree.HTML(detail_resp.text)
# 技能
skills = detail_tree.xpath('/html/body/div[5]/div[2]/div[2]/div[1]/div[1]/table[4]/tbody/tr')
del skills[0]
del skills[0]
for skill in skills:
item = {}
item['name'] = skill.xpath('./td[1]/text()')[0] # 技能
item['grade'] = skill.xpath('./td[2]/text()')[0] # 等级
item['property'] = skill.xpath('./td[3]/text()')[0] # 属性
item['type'] = skill.xpath('./td[4]/text()')[0] # 类型
item['target'] = skill.xpath('./td[5]/text()')[0] # 目标
item['power'] = skill.xpath('./td[6]/text()')[0] # 威力
item['pp'] = skill.xpath('./td[7]/text()')[0] # pp
item['result'] = skill.xpath('./td[8]/text()')[0] # 效果
instry.append(item)
# print(instry)
# 数据保存 (mysql)
sql = '''insert into pets(name,src,instry) values (%s,%s,%s);'''
cursor.execute(sql, [name, src, str(instry)])
conn.commit()
print(f'{name}--保存成功!')
except Exception as e:
pass
cursor.close()
conn.close()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
十.总结
本章内容主要是给大家讲解一下在爬虫过程中如何将数据保存mysql数据库中去,
最后面这个案例就是一个示范,希望这篇文章能给大家带来帮助,都看到这里了给
个三连支持一下吧!!!
1
2
3
1
2
3