㈠ 示波器顯示不全如何調節
1.旋轉輝度旋鈕,使波形亮度為零就看不到波形了
2.觸發方式選為正常或單次,但是又沒有信號滿足觸發條件,也會導致屏幕上無波形顯示
3.旋轉垂直位移旋鈕,導致波形高於或低於屏幕顯示,此時屏幕上也沒有波形
4.關閉通道的信號輸入也會使屏幕無波形
5.快速旋轉水平檔位旋鈕,從小時基快速變化到大時基,此時示波器要採集一個屏幕的信號才會刷新,所以也會有一定時間的波形消失以上都適用於數字示波器,如果是模擬示波器只有1,
㈡ 示波器倍率怎麼調
示波器一般在通道設置菜單里有一個探頭倍率選擇菜單,可以設置為1X,10X,1000X等不同的探頭倍率,但是這個探頭倍率的選取需要和探頭上的倍率相匹配,如不匹配,可能導致讀數錯誤的情況。
下面以鼎陽科技的示波器為例:
1. 首先要看探頭衰減檔是多少X1、X10、X100….. 是否和機器探頭衰減檔位對應的檔位要一致
5. 選擇對應好之後,按Menu off退出菜單即可(按萬能旋鈕確定不退出菜單也可以)
㈢ 示波器出現以下情況該如何調整
1.輸入信號低,調Y軸增益。
2.本振頻率過高調X掃描范圍。
3.掃描線不在可視范圍,調X軸位移 。
4.信號輸入幅度過大,減小軸增益
6.這是沒有信號輸入,time頻率為0.可以調節水平和垂直位置旋鈕,把光點移到中心。
㈣ 示波器如何使用
示波器的使用方法 1 示波器使用 本節介紹示波器的使用方法。示波器種類、型號很多,功能也不同。數字電路實驗中使用較多的是20MHz或者40MHz的雙蹤示波器。這些示波器用法大同小異。本節不針對某一型號的示波器,只是從概念上介紹示波器在數字電路實驗中的常用功能。 1.1 熒光屏 熒光屏是示波管的顯示部分。屏上水平方向和垂直方向各有多條刻度線,指示出信號波形的電壓和時間之間的關系。水平方向指示時間,垂直方向指示電壓。水平方向分為10格,垂直方向分為8格,每格又分為5份。垂直方向標有0%,10%,90%,100%等標志,水平方向標有10%,90%標志,供測直流電平、交流信號幅度、延遲時間等參數使用。根據被測信號在屏幕上占的格數乘以適當的比例常數(V/DIV,TIME/DIV)能得出電壓值與時間值。 1.2 示波管和電源系統 1.電源(Power) 示波器主電源開關。當此開關按下時,電源指示燈亮,表示電源接通。 2.輝度(Intensity) 旋轉此旋鈕能改變光點和掃描線的亮度。觀察低頻信號時可小些,高頻信號時大些。 一般不應太亮,以保護熒光屏。 3.聚焦(Focus) 聚焦旋鈕調節電子束截面大小,將掃描線聚焦成最清晰狀態。 4.標尺亮度(Illuminance) 此旋鈕調節...
1.獲得基線:當操作者在使用無使用說明書的示波器時,首先要獲得一條zui細的水平基線,然後才能用探頭進行其他測量,其具體方法如下: (1)預置面板各開關、旋鈕。 亮度置適中,聚焦和輔助聚焦置適中,垂直輸入耦合置AC,,,垂直電壓量程選擇置5mv/div,垂直工作方式選擇置CHl,垂直靈敏度微調校準位置置CAL,垂直通道同步源選擇置中間位置,垂直位置置中間位置,A和B掃描時間因數一起預置在0.5ms/div,A掃描時間微調置校準位置CAL,水平位移置中間位置,掃描工作方式置A,觸發同步方式置AUTO,斜率開關置+ ,觸發耦合開關置AC,觸發源選擇置INT。 (2)按下電源開關,電源指示燈點亮。 (3)調節A亮度聚焦等有關控制旋鈕,可出現纖細明亮的掃描基線,調節基線使其位置於屏幕中間與水平坐標刻度基本重合。 (4)調節軌跡平行度控制使基線與水平坐標平行。 2.顯示信號:一般情況下,示波器本身均有一個0.5Vpp標准方波信號輸出口,當獲得基線後,即可將探頭接到此處,此時屏幕應有一串方波信號,調節電壓量程和掃描時間因數旋鈕,方波的幅度和寬窄應變化,至此說明示波器基本調整完畢可以投入使用。
㈤ 如何調節示波器使波形完整
我用的金涵電子JDS3022E,用AUTO功能,感覺很方便,波形很快就出來了。
㈥ 示波器波形不穩定如何調節
當遇到復雜波形時,波形常常會出現閃動,表示的不穩定。例如下圖
一個周期內出現了三個上升沿,此時若觸發設置為自動觸發或者上升沿觸發,那麼觸發後的波形就會出現重疊。因為在一個波形周期中出現了三次觸發,每次觸發出來的波形都不一樣。這個情況,可以使用zds2022中的觸發設置中的【觸發釋抑】來調節就可以了。
㈦ 示波器怎麼調
雙蹤示波器的面板圖如圖5-12所示。其面板裝置按其位置和功能通常可劃分為3大部分:顯示、垂直(Y軸)、水平(X軸)。現分別介紹這3個部分控制裝置的作用。
1.顯示部分 主要控製件為:
(1)電源開關。
(2)電源指示燈。
(3)輝度 調整光點亮度。
(4)聚焦 調整光點或波形清晰度。
(5)輔助聚焦 配合「聚焦」旋鈕調節清晰度。
(6)標尺亮度 調節坐標片上刻度線亮度。
(7)尋跡 當按鍵向下按時,使偏離熒光屏的光點回到顯示區域,而尋到光點位置。
(8)標准信號輸出 1kHz、1V方波校準信號由此引出。加到Y軸輸入端,用以校準Y軸輸入靈敏度和X軸掃描速度。
2.Y軸插件部分
(1)顯示方式選擇開關 用以轉換兩個Y軸前置放大器YA與YB 工作狀態的控製件,具有五種不同作用的顯示方式:
「交替」: 當顯示方式開關置於「交替」時,電子開關受掃描信號控制轉換,每次掃描都輪流接通YA或YB 信號。當被測信號的頻率越高,掃描信號頻率也越高。電
子開關轉換速率也越快,不會有閃爍現象。這種工作狀態適用於觀察兩個工作頻率較高的信號。
「斷續」:當顯示方式開關置於「斷續」時,電子開關不受掃描信號控制,產生頻率固定為200kHz方波信號,使電子開關快速交替接通YA和YB。由於開關動作頻率高於被測信號頻率,因此屏幕上顯示的兩個通道信號波形是斷續的。當被測信號頻率較高時,斷續現象十分明顯,甚至無法觀測;當被測信號頻率較低時,斷續現象被掩蓋。因此,這種工作狀態適合於觀察兩個工作頻率較低的信號。
「YA」、「YB 」:顯示方式開關置於「YA 」或者「YB 」時,表示示波器處於單通道工作,此時示波器的工作方式相當於單蹤示波器,即只能單獨顯示「YA」或「YB 」通道的信號波形。
「YA + YB」:顯示方式開關置於「YA + YB 」時,電子開關不工作,YA與YB 兩路信號均通過放大器和門電路,示波器將顯示出兩路信號疊加的波形。
(2)「DC-⊥-AC」 Y軸輸入選擇開關,用以選擇被測信號接至輸入端的耦合方式。置於「DC」是直接耦合,能輸入含有直流分量的交流信號;置於「AC」位置,實現交流耦合,只能輸入交流分量;置於「⊥」位置時,Y軸輸入端接地,這時顯示的時基線一般用來作為測試直流電壓零電平的參考基準線。
(3)「微調V/div」 靈敏度選擇開關及微調裝置。靈敏度選擇開關系套軸結構,黑色旋鈕是Y軸靈敏度粗調裝置,自10mv/div~20v/div分11檔。紅色旋鈕為細調裝置,順時針方向增加到滿度時為校準位置,可按粗調旋鈕所指示的數值,讀取被測信號的幅度。當此旋鈕反時針轉到滿度時,其變化范圍應大於2.5倍,連續調節「微調」電位器,可實現各檔級之間的靈敏度覆蓋,在作定量測量時,此旋鈕應置於順時針滿度的「校準」位置。
(4)「平衡」 當Y軸放大器輸入電路出現不平衡時,顯示的光點或波形就會隨「V/div」開關的「微調」旋轉而出現Y軸方向的位移,調節「平衡」電位器能將這種位移減至最小。
(5)「↑↓ 」 Y軸位移電位器,用以調節波形的垂直位置。
(6)「極性、拉YA 」 YA 通道的極性轉換按拉式開關。拉出時YA 通道信號倒相顯示,即顯示方式(YA+ YB )時,顯示圖像為YB - YA 。
(7)「內觸發、拉YB 」 觸發源選擇開關。在按的位置上(常態) 掃描觸發信號分別取自YA 及YB 通道的輸入信號,適應於單蹤或雙蹤顯示,但不能夠對雙蹤波形作時間比較。當把開關拉出時,掃描的觸發信號只取自於YB 通道的輸入信號,因而它適合於雙蹤顯示時對比兩個波形的時間和相位差。
(8)Y軸輸入插座 採用BNC型插座,被測信號由此直接或經探頭輸入。
3.X軸插件部分
(1)「t/div」 掃描速度選擇開關及微調旋鈕。X軸的光點移動速度由其決定,從0.2μs~1s共分21檔級。當該開關「微調」電位器順時針方向旋轉到底並接上開關後,即為「校準」位置,此時「t/div」的指示值,即為掃描速度的實際值。
(2)「擴展、拉×10」 掃描速度擴展裝置。是按拉式開關,在按的狀態作正常使用,拉的位置掃描速度增加10倍。「t/div」的指示值,也應相應計取。採用「擴展 拉×10」適於觀察波形細節。
(3)「→← 」 X軸位置調節旋鈕。系X軸光跡的水平位置調節電位器,是套軸結構。外圈旋鈕為粗調裝置,順時針方向旋轉基線右移,反時針方向旋轉則基線左移。置於套軸上的小旋鈕為細調裝置,適用於經擴展後信號的調節。
(4)「外觸發、X外接」插座 採用BNC型插座。在使用外觸發時,作為連接外觸發信號的插座。也可以作為X軸放大器外接時信號輸入插座。其輸入阻抗約為1MΩ。外接使用時,輸入信號的峰值應小於12V。
(5)「觸發電平」旋鈕 觸發電平調節電位器旋鈕。用於選擇輸入信號波形的觸發點。具體地說,就是調節開始掃描的時間,決定掃描在觸發信號波形的哪一點上被觸發。順時針方向旋動時,觸發點趨向信號波形的正向部分,逆時針方向旋動時,觸發點趨向信號波形的負向部分。
(6)「穩定性」 觸發穩定性微調旋鈕。用以改變掃描電路的工作狀態,一般應處於待觸發狀態。調整方法是將Y軸輸入耦合方式選擇(AC-地-DC)開關置於地檔,將V/div開關置於最高靈敏度的檔級,在電平旋鈕調離自激狀態的情況下,用小螺絲刀將穩定度電位器順時針方向旋到底,則掃描電路產生自激掃描,此時屏幕上出現掃描線;然後逆時針方向慢慢旋動,使掃描線剛消失。此時掃描電路即處於待觸發狀態。在這種狀態下,用示波器進行測量時,只要調節電平旋鈕,即能在屏幕上獲得穩定的波形,並能隨意調節選擇屏幕上波形的起始點位置。少數示波器,當穩定度電位器逆時針方向旋到底時,屏幕上出現掃描線;然後順時針方向慢慢旋動,使屏幕上掃描線剛消失,此時掃描電路即處於待觸發狀態。
(7)「內、外」 觸發源選擇開關。置於「內」位置時,掃描觸發信號取自Y軸通道的被測信號;置於「外」位置時,觸發信號取自「外觸發X 外接」輸入端引入的外觸發信號。
(8)「AC」「AC(H)」「DC」 觸發耦合方式開關。 「DC」檔,是直流藕合狀態,適合於變化緩慢或頻率甚低(如低於100Hz)的觸發信號。「AC」檔,是交流藕合狀態,由於隔斷了觸發中的直流分量,因此觸發性能不受直流分量影響。「AC(H)」檔,是低頻抑制的交流耦合狀態,在觀察包含低頻分量的高頻復合波時,觸發信號通過高通濾波器進行耦合,抑制了低頻雜訊和低頻觸發信號(2MHz以下的低頻分量),免除因誤觸發而造成的波形幌動。
(9)「高頻、常態、自動」 觸發方式開關。用以選擇不同的觸發方式,以適應不同的被測信號與測試目的。「高頻」檔,頻率甚高時(如高於5MHz),且無足夠的幅度使觸發穩定時,選該檔。此時掃描處於高頻觸發狀態,由示波器自身產生的高頻信號(200kHz信號),對被測信號進行同步。不必經常調整電平旋鈕,屏幕上即能顯示穩定的波形,操作方便,有利於觀察高頻信號波形。「常態」檔,採用來自Y軸或外接觸發源的輸入信號進行觸發掃描,是常用的觸發掃描方式。「自動」擋,掃描處於自動狀態(與高頻觸發方式相仿),但不必調整電平旋鈕,也能觀察到穩定的波形,操作方便,有利於觀察較低頻率的信號。
(10)「+、-」 觸發極性開關。在「+」位置時選用觸發信號的上升部分,在「-」位置時選用觸發信號的下降部分對掃描電路進行觸發。
(二)使用前的檢查、調整和校準
示波器初次使用前或久藏復用時,有必要進行一次能否工作的簡單檢查和進行掃描電路穩定度、垂直放大電路直流平衡的調整。示波器在進行電壓和時間的定量測試時,還必須進行垂直放大電路增益和水平掃描速度的校準。示波器能否正常工作的檢查方法、垂直放大電路增益和水平掃描速度的校準方法,由於各種型號示波器的校準信號的幅度、頻率等參數不一樣,因而檢查、校準方法略有差異。
(三)使用步驟
用示波器能觀察各種不同電信號幅度隨時間變化的波形曲線,在這個基礎上示波器可以應用於測量電壓、時間、頻率、相位差和調幅度等電參數。下面介紹用示波器觀察電信號波形的使用步驟。
1.選擇Y軸耦合方式
根據被測信號頻率的高低,將Y軸輸入耦合方式選擇「AC-地-DC」開關置於AC或DC。
2.選擇Y軸靈敏度
根據被測信號的大約峰-峰值(如果採用衰減探頭,應除以衰減倍數;在耦合方式取DC檔時,還要考慮疊加的直流電壓值),將Y軸靈敏度選擇V/div開關(或Y軸衰減開關)置於適當檔級。實際使用中如不需讀測電壓值,則可適當調節Y軸靈敏度微調(或Y軸增益)旋鈕,使屏幕上顯現所需要高度的波形。
3.選擇觸發(或同步)信號來源與極性
通常將觸發(或同步)信號極性開關置於「+」或「-」檔。
4.選擇掃描速度
根據被測信號周期(或頻率)的大約值,將X軸掃描速度t/div(或掃描范圍)開關置於適當檔級。實際使用中如不需讀測時間值,則可適當調節掃速t/div微調(或掃描微調)旋鈕,使屏幕上顯示測試所需周期數的波形。如果需要觀察的是信號的邊沿部分,則掃速t/div開關應置於最快掃速檔。
5.輸入被測信號
被測信號由探頭衰減後(或由同軸電纜不衰減直接輸入,但此時的輸入阻抗降低、輸入電容增大),通過Y軸輸入端輸入示波器。
現 象
原 因
一、沒有光點或波形
電源未接通。
輝度旋鈕未調節好。
X,Y軸移位旋鈕位置調偏。
Y軸平衡電位器調整不當,造成直流放大電路嚴重失衡。
二、水平方向展不開
觸發源選擇開關置於外檔,且無外觸發信號輸入,則無鋸齒波產生。
電平旋鈕調節不當。
穩定度電位器沒有調整在使掃描電路處於待觸發的臨界狀態。
X軸選擇誤置於X外接位置,且外接插座上又無信號輸入。
兩蹤示波器如果只使用A通道(B通道無輸入信號),而內觸發開關置於拉YB位置,則無鋸齒波產生。
三、垂直方向無展示
輸入耦合方式DC-接地-AC開關誤置於接地位置。
輸入端的高、低電位端與被測電路的高、低電位端接反。
輸入信號較小,而V/div誤置於低靈敏度檔。
四、波形不穩定。
穩定度電位器順時針旋轉過度,致使掃描電路處於自激掃描狀態(未處於待觸發的臨界狀態)。
觸發耦合方式AC、AC(H)、DC開關未能按照不同觸發信號頻率正確選擇相應檔級。
選擇高頻觸發狀態時,觸發源選擇開關誤置於外檔(應置於內檔。)
部分示波器掃描處於自動檔(連續掃描)時,波形不穩定。
五、垂直線條密集或呈現一矩形
t/div開關選擇不當,致使f掃描<<f信號。
六、水平線條密集或呈一條傾斜水平線
t/div關選擇不當,致使f掃描>>f信號。
七、垂直方向的電壓讀數不準
未進行垂直方向的偏轉靈敏度(v/div)校準。
進行v/div校準時,v/div微調旋鈕未置於校正位置(即順時針方向未旋足)。
進行測試時,v/div微調旋鈕調離了校正位置(即調離了順時針方向旋足的位置)。
使用l0 :1衰減探頭,計算電壓時未乘以10倍。
被測信號頻率超過示波器的最高使用頻率,示波器讀數比實際值偏小。
測得的是峰-峰值,正弦有效值需換算求得。
八、水平方向的讀數不準
未進行水平方向的偏轉靈敏度(t/div)校準。
進行t/div校準時,t/div微調旋鈕未置於校準位置(即順時針方向未旋足)。
進行測試時,t/div微調旋鈕調離了校正位置(即調離了順時針方向旋足的位置)。
掃速擴展開關置於拉(×10)位置時,測試未按t/div開關指示值提高靈敏度10倍計算。
九、交直流疊加信號的直流電壓值分辨不清
Y軸輸入耦合選擇DC-接地-AC開關誤置於AC檔(應置於DC檔)。
測試前未將DC-接地-AC開關置於接地檔進行直流電平參考點校正。
Y軸平衡電位器未調整好。
十、測不出兩個信號間的相位差(波形顯示法)
雙蹤示波器誤把內觸發(拉YB)開關置於按(常態)位置應把該開關置於拉YB位置。
雙蹤示波器沒有正確選擇顯示方式開關的交替和斷續檔。
單線示波器觸發選擇開關誤置於內檔。
單線示波器觸發選擇開關雖置於外檔,但兩次外觸發未採用同一信號。
十一、調幅波形失常
t/div開關選擇不當,掃描頻率誤按調幅波載波頻率選擇(應按音頻調幅信號頻率選擇)。
十二、波形調不到要求的起始時間和部位
穩定度電位器未調整在待觸發的臨界觸發點上。
觸發極性(+、-)與觸發電平(+、-)配合不當。
觸發方式開關誤置於自動檔(應置於常態檔)。
6.觸發(或同步)掃描
緩緩調節觸發電平(或同步)旋鈕,屏幕上顯現穩定的波形,根據觀察需要,適當調節電平旋鈕,以顯示相應起始位置的波形。
如果用雙蹤示波器觀察波形,作單蹤顯示時,顯示方式開關置於YA或YB。被測信號通過YA或YB輸入端輸入示波器。Y軸的觸發源選擇「內觸發一拉YB」開關置於按(常態)位置。若示波器作兩蹤顯示時,顯示方式開關置於交替檔(適用於觀察頻率不太低的信號),或斷續檔(適用於觀察頻率不太高的信號),此時Y軸的觸發源選擇「內觸發-拉YB」開關置「拉YB」檔。
(四)使用不當造成的異常現象
示波器在使用過程中,往往由於操作者對於示波原理不甚理解和對示波器面板控制裝置的作用不熟悉,會出現由於調節不當而造成異常現象。現把示波器使用過程中,常見的由於使用不當而造成的異常現象及其原因羅列於表5-1中,供示波器使用者參考。
三、示波器的測試應用
(一)電壓的測量
利用示波器所做的任何測量,都是歸結為對電壓的測量。示波器可以測量各種波形的電壓幅度,既可以測量直流電壓和正弦電壓,又可以測量脈沖或非正弦電壓的幅度。更有用的是它可以測量一個脈沖電壓波形各部分的電壓幅值,如上沖量或頂部下降量等。這是其他任何電壓測量儀器都不能比擬的。
1.直接測量法
所謂直接測量法,就是直接從屏幕上量出被測電壓波形的高度,然後換算成電壓值。定量測試電壓時,一般把Y軸靈敏度開關的微調旋鈕轉至「校準」位置上,這樣,就可以從「V/div」的指示值和被測信號佔取的縱軸坐標值直接計算被測電壓值。所以,直接測量法又稱為標尺法。
(1)交流電壓的測量
將Y軸輸入耦合開關置於「AC」位置,顯示出輸入波形的交流成分。如交流信號的頻率很低時,則應將Y軸輸入耦合開關置於「DC」位置。
將被測波形移至示波管屏幕的中心位置,用「V/div」開關將被測波形控制在屏幕有效工作面積的范圍內,按坐標刻度片的分度讀取整個波形所佔Y軸方向的度數H,則被測電壓的峰-峰值VP-P可等於「V/div」開關指示值與H的乘積。如果使用探頭測量時,應把探頭的衰減量計算在內,即把上述計算數值乘10。
例如示波器的Y軸靈敏度開關「V/div」位於0.2檔級,被測波形佔Y軸的坐標幅度H為5div,則此信號電壓的峰-峰值為1V。如是經探頭測量,仍指示上述數值,則被測信號電壓的峰-峰值就為10V。
(2)直流電壓的測量
將Y軸輸入耦合開關置於「地」位置,觸發方式開關置「自動」位置,使屏幕顯示一水平掃描線,此掃描線便為零電平線。
將Y軸輸入耦合開關置「DC」位置,加入被測電壓,此時,掃描線在Y軸方向產生跳變位移H,被測電壓即為「V/div」開關指示值與H的乘積。
直接測量法簡單易行,但誤差較大。產生誤差的因素有讀數誤差、視差和示波器的系統誤差(衰減器、偏轉系統、示波管邊緣效應)等。
2.比較測量法
比較測量法就是用一已知的標准電壓波形與被測電壓波形進行比較求得被測電壓值。
將被測電壓Vx輸入示波器的Y軸通道,調節Y軸靈敏度選擇開關「V/div」及其微調旋鈕,使熒光屏顯示出便於測量的高度Hx並做好記錄,且「V/div」開關及微調旋鈕位置保持不變。去掉被測電壓,把一個已知的可調標准電壓Vs輸入Y軸,調節標准電壓的輸出幅度,使它顯示與被測電壓相同的幅度。此時,標准電壓的輸出幅度等於被測電壓的幅度。比較法測量電壓可避免垂直系統引起和誤差,因而提高了測量精度。
(二)時間的測量
示波器時基能產生與時間呈線性關系的掃描線,因而可以用熒光屏的水平刻度來測量波形的時間參數,如周期性信號的重復周期、脈沖信號的寬度、時間間隔、上升時間(前沿)和下降時間(後沿)、兩個信號的時間差等等。
將示波器的掃速開關「t/div」的「微調」裝置轉至校準位置時,顯示的波形在水平方向刻度所代表的時間可按「t/div」開關的指示值直讀計算,從而較准確地求出被測信號的時間參數。
㈧ 如何調節示波器亮度
通過示波器可以直觀地觀察被測電路的波形,包括形狀、幅度、頻率(周期)、相位,還可以對兩個波形進行比較,從而迅速、准確地找到故障原因。正確、熟練地使用示波器,是初學維修人員的一項基本功。
雖然示波器的牌號、型號、品種繁多,但其基本組成和功能卻大同小異,本文介紹通用示波器的使用方法。
一、面板介紹
1.亮度和聚焦旋鈕
亮度調節旋鈕用於調節光跡的亮度(有些示波器稱為"輝度"),使用時應使亮度適當,若過亮,容易損壞示波管。 聚焦調節旋鈕用於調節光跡的聚焦(粗細)程度,使用時以圖形清晰為佳。
2.信號輸入通道
常用示波器多為雙蹤示波器,有兩個輸入通道,分別為通道1(CH1)和通道2(CH2),可分別接上示波器探頭,再將示波器外殼接地,探針插至待測部位進行測量。
3.通道選擇鍵(垂直方式選擇)
常用示波器有五個通道選擇鍵:
(1)CH1:通道1單獨顯示;
(2)CH2:通道2單獨顯示;
(3)ALT:兩通道交替顯示;
(4)CHOP:兩通道斷續顯示,用於掃描速度較慢時雙蹤顯示;
(5)ADD:兩通道的信號疊加。維修中以選擇通道1或通道2為多。
4.垂直靈敏度調節旋鈕
調節垂直偏轉靈敏度,應根據輸入信號的幅度調節旋鈕的位置,將該旋鈕指示的數值(如0.5V/div,表示垂直方向每格幅度為0.5V)乘以被測信號在屏幕垂直方向所佔格數,即得出該被測信號的幅度。
5.垂直移動調節旋鈕
用於調節被測信號光跡在屏幕垂直方向的位置。
6.水平掃描調節旋鈕
調節水平速度,應根據輸入信號的頻率調節旋鈕的位置,將該旋鈕指示數值(如0.5ms/div,表示水平方向每格時間為0.5ms),乘以被測信號一個周期佔有格數,即得出該信號的周期,也可以換算成頻率。
7.水平位置調節旋鈕
用於調節被測信號光跡在屏幕水平方向的位置。
8.觸發方式選擇
示波器通常有四種觸發方式:
(1)常態(NORM):無信號時,屏幕上無顯示;有信號時,與電平控制配合顯示穩定波形;
(2)自動(AUTO):無信號時,屏幕上顯示光跡;有信號時與電平控制配合顯示穩定的波形;
(3)電視場(TV):用於顯示電視場信號;
(4)峰值自動(P-P AUTO):無信號時,屏幕上顯示光跡;有信號時,無需調節電平即能獲得穩定波形顯示。該方式只有部分示波器(例如CALTEK卡爾泰克CA8000系列示波器)中採用。
9.觸發源選擇
示波器觸發源有內觸發源和外觸發源兩種。如果選擇外觸發源,那麼觸發信號應從外觸發源輸入端輸入,家電維修中很少採用這種方式。如果選擇內觸發源,一般選擇通道1(CH1)或通道2(CH2),應根據輸入信號通道選擇,如果輸入信號通道選擇為通道1,則內觸發源也應選擇通道1。 二、測量方法
1.幅度和頻率的測量方法(以測試示波器的校準信號為例)
(1)將示波器探頭插入通道1插孔,並將探頭上的衰減置於"1"檔;
(2)將通道選擇置於CH1,耦合方式置於DC檔;
(3)將探頭探針插入校準信號源小孔內,此時示波器屏幕出現光跡;
(4)調節垂直旋鈕和水平旋鈕,使屏幕顯示的波形圖穩定,並將垂直微調和水平微調置於校準位置;
(5)讀出波形圖在垂直方向所佔格數,乘以垂直衰減旋鈕的指示數值,得到校準信號的幅度;
(6)讀出波形每個周期在水平方向所佔格數,乘以水平掃描旋鈕的指示數值,得到校準信號的周期(周期的倒數為頻率);
(7)一般校準信號的頻率為1kHz,幅度為0.5V,用以校準示波器內部掃描振盪器頻率,如果不正常,應調節示波器(內部)相應電位器,直至相符為止。
2.示波器應用舉例(以測量788手機13MHz時鍾脈沖為例)
手機中的13MHz時鍾信號正常是開機的必要條件,因此維修時要經常測量有無13MHz時鍾信號。步驟如下:
(1)打開示波器,調節亮度和聚焦旋鈕,使屏幕上顯示一條亮度適中、聚焦良好的水平亮線;
(2)按上述方法校準好示波器,然後將耦合方式置於AC檔;
(3)將示波器探頭的接地夾夾在手機電路板的接地點,探針插到788手機CPU第腳;
(4)接通手機電源,按開機鍵,調節垂直掃描水和平掃描旋鈕,觀察屏幕上是否出現穩定的波形,如果沒有,一般說明沒有13MHz信號。