① 液态氦可否凝固
在极低温度下气态氦转变为液态氦 。由于氦原子间的相互作用(范德瓦耳斯力)和原子质量都很小,很难液化,更难凝固 。富同位素4He的气液相变曲线如图1。4He的临界温度和临界压强分别为5.20K和2.26大气压,一个大气压下的温度为4.215K 。在常压下,温度从临界温度下降至绝对零度时,氦始终保持为液态,不会凝固,只有在大于25大气压时才出现固态。普通液氦是一种很易流动的无色液体,其表面张力极小,折射率和气体差不多,因而不易看到它。液态4He包括性质不同的两个相 ,分别称为HeⅠ和HeⅡ,在两个相之间的转变温度处,液氦的密度、电容率和比热容均呈现反常的增大。两个液相HeⅠ和HeⅡ间的转变温度称为λ点,饱和蒸气压下的λ点为2.172K,压强增加时,λ点移向较低的温度,两个液相的相变曲线为一直线,称为λ线(图1)。
图1 液态氨
液氦具有一系列引人注目的特点,主要表现在以下几方面。
超流动性 普通液体的粘滞度随温度的下降而增高,与此不同,HeⅠ的粘滞度在温度下降到2.6K左右时 ,几乎与温度无关 ,其数值约为3×10-6帕秒,比普通液体的粘滞度小得多。在2.6K以下,HeⅠ的粘滞度随温度的降低而迅速下降。HeⅡ的粘滞度在λ点以下的温度时立刻降至非常小的值(<10-12帕秒),这种几乎没有粘滞性的特性称为超流动性。用粗细不同的毛细管做实验时,发现流管愈细,超流动性就愈明显,在直径小于10-5厘米的流管中,流速与压强差和流管长度几乎无关,而仅取决于温度,流动时不损耗动能。
对HeⅡ性质的理论研究首先由F.伦敦作出。4He原子是自旋为整数的玻色子,伦敦把HeⅡ看成是由玻色子组成的玻色气体,遵守玻色统计规律,玻色统计允许不同粒子处于同一量子态中。伦敦证明了存在一个临界温度Tc,当温度低于Tc时,一些粒子会同时处于零点振动能状态(即基态),称为凝聚,温度愈低,凝聚到零点振动能状态的粒子数就愈多,在绝对零度时,全部粒子都凝聚到零点振动能状态,以上现象称为玻色-爱因斯坦凝聚 。L.蒂萨认为HeⅡ的超流动性起因于玻色-爱因斯坦凝聚 。由于已凝聚到基态的HeⅡ原子具有最低的零点振动能,故有极大的平均自由程,能够几乎无阻碍地通过极细的毛细管。蒂萨首先提出二流体型,后来L.D.朗道修正和补充了此模型。二流体模型认为HeⅡ由两部分独立的、可互相渗透的流体组成,一种是处于基态的凝聚部分,熵等于零,无粘滞性,是超流体;另一种是处于激发态(未凝聚)的正常流体,熵不等于零,有粘滞性。两种流体的密度之和等于HeⅡ的总密度,温度降至λ点时,正常流体开始部分地转变为超流体,温度愈低,超流体的密度愈大,而正常流体的密度则愈小,在绝对零度时,所有原子都处于凝聚状态,全部流体均为超流体。利用这个二流体模型可解释关于液氦的许多力学和热学性质。
热传导 HeⅠ具有普通流体的导热率,因而当减小压强时,液氦出现激烈的沸腾现象。HeⅡ的导热率要比HeⅠ高出106倍,比铜高出104倍。当温度越过λ点,HeⅠ转变为HeⅡ时,液氦从很坏的热导体突然变为到目前为止最好的热导体。由于HeⅡ的导热率异乎寻常地高,其内部不可能出现温差 ,因而内部不可能汽化,即不能沸腾。当利用抽气方法减低蒸气压时,开始阶段出现激烈的沸腾,温度降低至λ点以下时,HeⅠ转变为HeⅡ,沸腾突然停止,液面平静如镜,汽化只发生在液面。正常流体的导热率与温度梯度无关,纯粹是反映物质性质的量,但HeⅡ的导热率却与温度梯度甚至容器的几何形状有关。
氦膜 任何与HeⅡ接触的器壁上覆盖一层液膜,液膜中只包含无粘滞性的超流体成分,称为氦膜。氦膜的存在使液氦能沿器壁向尽可能低的位置移动。将空的烧杯部分地浸于HeⅡ中时,烧杯外的液氦将沿烧杯外壁爬上杯口,并进入杯内,直至杯内和杯外液面持平。反之,将盛有液氦的烧杯提出液氦面时,杯内液氦将沿器壁不断转移到杯外并滴下。液氦的这种转移的速率与液面高度差、路程长短和障壁高度无关。
热效应 包括机-热和热-机两种效应。如图2a,盛有液氦的两个容器用极细的毛细管C连通,注入液氦,温度低于λ点,右侧液面高于左侧 ,形成压强差Δp。液氦中低熵超流成分能从右侧通过毛细管转移到左侧,而高熵的正常成分不能通过毛细管。这导致右侧液氦的熵增加,左侧的熵减少,这意味着右侧温度升高而左侧温度降低。这种由机械力引起的热量迁移称为机-热效应 。机-热效应的逆过程称为热-机效应,如图2b所示。右侧液氦受热后(吸热Q),低熵的超流成分减少,左侧液氦中的超流成分通过毛细管流向右侧,而正常成分不能通过毛细管,这导致右侧液面升高形成压强差。图2c是演示热-机效应的“喷泉”装置。带毛细管喷嘴的无底玻璃管的填充金刚砂粉末P,用棉花C塞住底部,浸入液氦中。用光照射玻璃管,使管内的液氦温度升高,超流成分激发成正常成分。管外的超流成分通过棉花塞向管内转移,形成内外压强差,液氦从喷嘴喷出。
图2
第二声波 普通流体中的声波是由密度交替变化形成的,称密度波。1941年朗道发展了量子液体的流体动力学,预言在HeⅡ中除普通密度波(称第一声波)外,还存在另一种声波,它是由液氦中超流成分(低熵,温度较低)与正常流体成分(高熵,温度较高)的相对运动形成的,称为温度波或熵波(第二声波)。实验证实了温度波的存在。
3He是4He的同位素,在天然氦中所占比例小于10-7,通过人工核反应可得足够数量的3He。3He的临界温度和临界压强分别为3.34K和1.17大气压。与4He一样,在常压下液态3He不会固化,在绝对零度附近需加34个大气压才能固化。1972年,D.D.奥舍罗夫等人在2mK低温下发现了两个3He的液态新相,分别称为3He-A和3He-B,它们均为超流态。液态3He和4He在0.87K以上温度时完全互溶,在该温度以下则分离成两相,按3He所占比例的多少分别称为浓相(含3He较多)和稀相(含3He较少),浓相浮于稀相之上(因3He比4He轻)。3He原子从浓相通过界面进入稀相时要吸热,这就是稀释致冷机的工作原理(见超低温技术)。3He原子的电子总自旋为零,核自旋为1/2,故与电子一样属费米子,遵守费米-狄拉克统计,液态3He称为费米液体,正常态的液态3He的性质可用朗道的费米液体理论描述。
② 血液离体以后在密封状态下(放在血液采集管里)会凝固吗如果不凝固,正常情况下,能保持液体多久
碰到不同类型的血液不是凝固哦,是直接溶血啦。血液在血管内凝血一般是机体处于高凝状态的情况下,比如说体内的一些病变都会引起机体的生理环境改变,从而引起体内的凝血。凝血系统亢进(如一些凝血因子被不正常的激活),纤溶系统功能低下(那么在体内形成的血块儿无法溶解,会堵塞血管,血流变慢,血液更容易凝集形成更大的血块儿)。
如果是血液碰到水,要看是什么水了,纯净水,像蒸馏水的话,那么红细胞破裂,发生溶血,如果是一些等渗溶液,比如生理盐水,那么没有任何的改变,不会凝血也不会溶血。
③ 有什么液体能够迅速凝固
血
④ 液态的水降到什么时候就开始凝固成冰,液态的冰在什么时候能重新变成液态的水
液态的水降到(0℃)时就开始凝固成冰,固态的冰在(0℃)时能重新变成液态的水水在常温常压下为无色无味的透明液体。在自然界,纯水是非常罕见专的,水通常多是酸、属碱、盐等物质的溶液,习惯上仍然把这种水溶液称为水。
纯水可以用铂或石英器皿经过几次蒸馏取得,当然,这也是相对意义上纯水,不可能绝对没有杂质,水是一种可以在液态、气态和固态之间转化的物质。固态的水称为冰;气态叫水蒸气
水是最常见的物质之一,是包括人类在内所有生命生存的重要资源,也是生物体最重要的组成部分。水在生命演化中起到了重要的作用。人类很早就开始对水产生了认识,东西方古代朴素的物质观中都把水视为一种基本的组成元素,五行之一;西方古代的四元素说中也
⑤ 液态晶体在凝固过程中怎么样
凝固是物质从液相变为固相的相变过程
液态晶体物质在凝固过程中放出热量(称为凝固热,其数值等于熔化热),在凝固过程中其温度保持不变,直至液体全部变为晶体为止。
非晶体的液态物质,在凝固过程中,温度降低逐渐失去流动性,最后变为固体。在凝固过程它没有一定的凝固点,只是与某个温度范围相对应。
熔化是凝固的相反过程,凝固是放热的过程。
相关知识:
又称晶态液体(crystalline liquid)。简称液晶。介于晶体和液体之间的中间状态。某些有机长分子物质在某温度范围内具有一定 流动性的 各向异性的液体。
⑥ 液态的水通过加热后为什么也可以发生凝固
将冰熔化成水,缔合水分子中的一些氢键断裂,冰的晶体消失。0℃的水与0℃的冰相比,缔合水分子中的单个水分子数目减少,分子的间距变小、空隙减少,所以0℃的水比0℃的冰密度大。用伦琴射线照射0℃的水,发现只有15%的氢键断裂,水中仍然存在有约85%的微小冰晶体(即大的缔合水分子)。
考虑水密度随温度变化的规律时,应当综合考虑两种因素的影响。在水温由0℃升至4℃的过程中,由缔合水分子氢键断裂引起水密度增大的作用,比由分子热运动速度加快引起水密度减小的作用更大,所以在这个过程中,水的密度随温度的增高而加大,为反常膨胀。
⑦ 如何凝固液体
最好用的就是降温,所以可以放在各种各样的冰箱里,可以用制冷剂(液态氮)喷等
⑧ 凝固和固化,融化和液化有什么区别
物质有气、液、固,3种不同的形态。
固化就是气或液变成固态,凝固指液态变成固态。
液化固态或气态变成液态,融化指固态变成液态。
⑨ 液体凝固的条件是什么
晶体熔化后的液体凝固条件是:温度达到凝固点,继续放热。
如果是其他液体.持续降温放热即可。
⑩ 液态金属凝固的方式分为哪三种
液态金属凝固的方式分为逐层凝固、中间凝固、糊状凝固。
液态金属是指一种不定型金属,液态金属可看作由正离子流体和自由电子气组成的混合物。液态金属也是一种不定型、可流动液体的金属。