‘壹’ 对一个二能级系统,当温度无限高时,两个能级的粒子分布数n1/n2有什么样的关系
1.线速度V=s/t=2πr/T
2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r
4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期与频率:T=1/f
6.角速度与线速度的关系:V=ωr
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
注:
(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;
(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。
3)万有引力
1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2
(G=6.67×10-11N•m2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2
{R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速粗桥察度V1=(g地r地)1/2=(GM/r地消枯)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
注:
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一岩茄同三反);
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
‘贰’ 激光从业者请进:为何二能级系统不能实现粒子数反转
请去这个掘者渗地址下载解释:
http://www.uzz.e.cn/phy/jpkch/gxjaocai/9/%A1%EC9%A3%AD3.doc
这个判脊word文档中第二嫌帆页有您要得答案
‘叁’ 二能级系统能不能产生激光,为什么
能级间不能实现粒子数的反转
‘肆’ 激光是怎样产生的是因汇聚声波而产生的吗
激光是怎样产生的?在一个原子体系中,总有些原子处于高能级,有些处于低能级。而自发辐射产生的光子既可以去刺激高能级的原子使它产生受激辐射,也可能被低能级的原子吸收而造成受激吸收。因此,在光和原子体系的相互作用中,自发辐射、受激辐射和受激吸收总是同时存在的。 如果想获得越来越强的光,也就春誉是说产生越来越多的光子,就必须要使受激辐射产生的光子多于受激吸收所吸收的光子。怎样才能做到这一点呢?我们知道,光子对于高低能级的光子是一视同仁的。在光子作用下,高能级原子产生受激辐射的机会和低能级的原子产生受激吸收的机会是相同的。这样,是否能得到光的放大就取决于高、低能级的原子数量之比。若位于高能级的原子远远多于位于低能级的原子,我们就得到被高度放大的光。但是,在通常热平衡的原子体系中,原子数目按能级的分布服从玻尔兹仿缺曼分布率。因此,位于高能级的原子数总是少于低能级的原子数。在这种情况下,为了得到光的放大,必须到非热平衡的体系中去寻找。 所谓非热平衡体系,是指热运动并没有达到平衡、整个体系不存在一个恒定温度的原子体系。这种体系的原子数目按能级的分布不服从玻尔兹曼分布率,位于高能级上的原子数目有可能大于位于低能级上的原子数目。备森辩这种状态称为“粒子数反转”。如何才能达到粒子数反转状态呢?这需要利用激活媒质。所谓激活媒质(也称为放大媒质或放大介质),就是可以使某两个能级间呈现粒子数反转的物质。它可以是气体,也可以是固体或液体。用二能级的系统来做激活媒质实现粒子数反转是不可能的。要想获得粒子数反转,必须使用多能级系统。 在现代的激光器中,第一台激光器红宝石激光器是三能级系统,也有一些激光器采用了四能级系统,如钕玻璃激光器。
‘伍’ 为什么二能级系统不能产生激光
不能实现粒子数翻转
‘陆’ 首个时间晶体二能级系统,将带来更好的量子计算机
量子计算有潜力解决当今经典计算机无法解决的现实问题。然而不幸的是,它很脆弱。主要受到一种叫做“退相干”的东西影响,这很像熵。时间晶体或许能够解决这一问题。
2018年5月,芬兰阿尔托大学的研究表明,时间晶体可能是制造量子计算机的关键。通过自振荡过程,时间晶体在自身内部交换电子,而不使用能量,这使得离子无论经过多少时间都能够保持相干。2020年8月,在《自然·材料》杂志发表的一篇论文中,研究人员首次观察到了时间晶体的相互作用。
现在,物理学家创造了有史以来第一个时间晶体二能级(two-level)系统。
英国兰卡斯特大学物理学家Samuli Autti领导的国际研究团队成功在超流体内部制造出两个时间晶体 ,并使它们相互接触,制造出了一个遵循量子规则的耦合系统,为使用时间晶体作为量子比特运行的量子计算机奠定了基础。
该研究成果以《量子时间晶体的非线性二能级动力学》为题于6月2日发表在《自然·通讯》杂志上[1]。
长期以来,人们一直认为时间晶体并不可能实现——因为它们是由运动永无止境的“原子”制成的。
时间晶体是普通晶体的时间模拟物。
时间晶体与普通晶体相似,因为它们基于重复的原子结构;但是时间晶体的“原子”行为却略有不同:它们在时间上表现出运动的模式,而这种模式不能轻易地用外力来解释,这些振荡被锁定在有规律和特定的频率。从理论上讲,时间晶体以尽可能低的能量状态振荡,因此在很长一段时间内是稳定且相干的;因此,当时间晶体在空间和时间中重复时,会表现出永久的基态运动。
2012年,诺贝尔奖获得者Frank Wilczek首次提出“时间晶体”这一理论。他提出,即使在最低能量下,原子也可能随着时间的推移而变化,就像超导体在技术上可以在最低能量状态下携带电流一样。这意味着从理论上讲,它们可以在没有能量源的情况下永远重复,像一台“永动机”;但是卜凳根据热力学定律,这种装置是不可能的。
Frank Wilczek
自Wilczek的预测以来,许多研究人员进行了实验,表明原子的行为方式可能有资格成为时间晶体。
2016年,马里兰大学、哈佛大学团队使用了加州大学伯克利分校研究人员提出的方法,正式发现和确认了时间晶体[2]:尽管没有外部输入,但这些晶体在时间上呈现出恒定、重复运动的特性,它们的原子不断地振荡、旋转,或者首先向一个方向移动,然后再向另一个方向移动。
2020年,首次实现了两个量子时间晶体的相互作用,并表明时间晶体遵循量子力学规则[3]。
此次研究成果意义重大:这是第一次,孤立的粒子群表现为时间晶体的奇异物质状态,并连接到一个单一的、不断发展的系统,这是将时间晶体用于实际目的的下一步,例如量子信息处理。
“每个人都知道永动机是不可能的,”Samuli Autti说,“然而,在量子物理学中,只要我们闭上眼睛,永动机是可以的。通过潜入这个缝隙,我们可以制造时间晶体。”
该团队使用的时间晶体由称为“磁振子”(magnon)的准粒子组成:磁振子不是真正的粒子,而是由电子自旋的集体激发组禅乱成,就像通过自旋晶格传播的波一样。当氦-3(一种具有两个质子但只有一个中子的氦的稳定同位素)冷却到绝对零度的万分之一以内时,就会出现磁振子——这就产生了“B相超流体”(B-phase superfluid,一种具有低压的无黏性流体)。
实验示意图。超流体氦-3样品被装在一个石英玻璃缸中。磁振子时间晶体(蓝色圆球)被困于容器中间,这是由于使用线圈(pinch coil,绿色线环)产生的静态磁场的最小值和超流体轨道动量L(绿色小箭头)的空间分布共同作用的结果;使用线圈(NMR coil)可以观察到时间贺弊档晶体中磁化M(粉红色锥体)的相干预演;静态磁场H的方向与圆柱体的轴线平行。
在B相超流体这种介质中,时间晶体形成为空间上不同的玻色-爱因斯坦凝聚态(由玻色子冷却到绝对零度以上形成),每个凝聚态由一万亿个磁振子准粒子组成。
这导致它们沉入最低能量状态,移动得非常缓慢并且聚集在一起甚至重叠产生高密度的原子云,其作用类似于一个“超级原子”或物质波。当两个时间晶体被允许相互接触时,它们交换了磁振子。这种交换影响了每个时间晶体的振荡,创建了一个单一的系统,时间晶体可以选择在两种离散状态下运行。
a.L的分布(绿色箭头)将磁振子限制在两个局部最小点,承载两个相邻的时间晶体:一个在超流体的主体(蓝色圆球),另一个接触自由表面(红色圆球)。在每个时间晶体中,磁化是相干的且与测量电路相耦合;b.磁振子改变了L分布所产生的约束陷阱,这增加了各状态之间的耦合;c.两级系统的状态(红色箭头)可以用一个布洛赫球来说明,其中径向距离对应于磁子数NB+NS,时间晶体的预演之间的相对相位对应于方位角j,极性角θ描述了“叠加”中两级基础状态的相对权重。
量子物理学中,在被明确的测量固定下来之前,物体可以具有多个状态,并存在于这些状态的混合中。 因此,让时间晶体在双态系统中工作,为量子技术提供了丰富的新选择。
“事实证明,将两个时间晶体放在一起效果很好,”Samuli Autti博士解释说[4]。
量子计算机的基本构建块被称为“二能级系统”——一个存在于两个独立量子态叠加的量子系统。这正是此次研究人员所构建的,“在我们的实验中,由自旋波准粒子组成的两个耦合时间晶体……形成一个宏观的两级系统。”该论文解释说。
“这两个能级随着时间而演变,本质上是由非线性反馈决定的,使我们能够构建自发的二能级动力学。 磁振子时间晶体允许在一次实验中了解量子相干相互作用的各个方面和细节,因此这种二能级系统的发现可能提供一种制造量子计算机的方法,而且可以在无需冷却的环境下工作。 ”
参考链接:
[1]https://www.nature.com/articles/s41467-022-30783-w
[2]https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.030401
[3]https://www.nature.com/articles/s41563-020-0780-y
[4]https://www.iflscience.com/physics/impossible-time-crystal-system-could-hold-secret-to-quantum-computing-revolution/
‘柒’ 如何实现粒子数反转
粒子数反转的粒子数反转基础原理
高能态粒子数大于族山低能态粒子数的非热平衡状态。在热平衡状态下,粒子数按能态的分布遵循玻耳兹曼分布律:N₂/N₁ =g₂/g₁·exp[-(E2-E1)/kT]式中k为玻耳兹曼常数,N2、g2和N1、g1分别为高能态E2和低能态E1的粒子数和统计权重。由于E2>E1,T>0,故N1>N2 ,即高能态上的粒子总少于低能态上的粒子数。于是原子系统的受激吸收过程总占优势。原子系统单位时间内从辐射场所吸收的光子数总是多于受激发射产生的光子数。如果采用适当的激励,破坏热平衡状态,使高能态粒子数多于低能态粒子数,即Δ=N2-N1>0,就说实现了粒子数反转,Δ称反转粒子数。粒子早穗简数反转是相对于热平衡分布而言的。当体系处于粒子数反转状态时,受激辐射光子数多于被吸收的光子数,因此对光子数具有放大作用。一个激光器要实现激光运转,粒子数反转是必要条件之一。从Δ>0可知,体系处于粒子数反转状态时,体系的温度T<0,因而说体系处于负温度状态。这是形式上的一种说法。实际上,在热平衡状态下,T不能取负值。但是体系处于粒子数反转状态时,它并不处于热平衡状态。
激光工作物质为什么可以实现粒子数反转
这是激光工作物质的一种属性。
低能级的粒子经过泵浦激励以一定的速率跃迁到高能级;跃迁到高能级的粒子经过热弛豫及自发辐射再回到低能级。当粒子激励向上跃迁的速率大于高能级粒子向下跃迁的速率,在高能级上的粒子越来越多,低能级的粒子越来越少,这样就形成了粒子数反转。
讲的比较通俗,希望能帮到你!
什么是粒子反转数
在通常情况下,处于低能级E1的原子数大于处于高能级E2的原子数,这种情况得不到激光。为了得到激光,就必须使高能级E2上的原子数目大于低能级E1上的原子数目,因为E2上的原子多,发生受激辐射,使光增强(也叫做光放大)。为了达到这个目的,必须设法把处于基态的原子大量激发到亚稳态E贰,处于高能级E2的原子数就可以大大超过处于低能级E1的原子数。这样就在能级E2和E1之间实现了粒子数的反转。在工作物质处于谐振腔内时,只要有能量为hν=E2-E1的光子能引起腔内谐振,就可以得到激光。实现粒子数反转的工作物质是制造激光器所不能缺少的。例如,氦氖激光器中,通过氦原子的协助,使氖原子中的两个能级实现粒子数反转而获得激光。
在职读硕,有意思吗? 5分
主要看你的精力,如果没什么事,工作生活压力都不大,那你就可以在职攻读陆裤,如果你觉得现在的工作生活已经让你疲于奔命了那我想你还是考虑清楚到底是要锭作还是要学习!
粒子数反转是反向旋转吗?
不是
是两个数量颠倒的意思
为什么二能级系统不能实现粒子数反转?
请去这个地址下载解释: uzz.e/...D3.doc 这个word文档中第二页有您要得答案
激光器中实现粒子数反转的条件是
1,激光物质亚稳态时间够长;2,泵浦源功率够大;3,泵浦效率够高攻激光物质在亚稳态时间内吸收的能量够大)。
‘捌’ 在激光原理中,三能级系统与二能级的区别
能不能产生激光的区别。在激光原理中,三伍世能级系统能产生激光,二能级的不能产生激光,所以区别是能不能产生激光。激光是光与物质的相互作用,实质上是组成物腔纤肢质的微观粒子吸收或辐射光子,同时改变自身运动状竖销况的表现。
‘玖’ 二能级系统与三能级系统区别
二能级系统与三能级系稿芦统区别是二能级系统不能产生激光。
1、双能级系统是指如贺敬告果激光器运转过程中有关的能级只有两个,用有效的激励手段把处于下能级E1的原子尽可能多地抽运到上能级E2。激光产生需要机械强大的,二能级系统不能产生激光的原因主要是激光喷射所产生的机械无法满足。
2、三能级系统需要较高的阈值反转粒子数,三能级系统是共享下能级的。所以激光上能级的离子数要很大。而四能急系禅明统由于下能级很快抽空,只要很少粒子数就可以实现集聚数反转。
‘拾’ 微观粒子的能级是什么
微观粒子不同于宏观物质,它的能量只能取一些不连续的值,而不能取这些值的中间值。粒子处于这些不同的能量,埋铅就叫“能级”,可以理解成“能量级别”。粒子可以处于第一能级,也可以处于第二能级,但是不会处于两个能级之间。
而跃迁,是指粒子厅茄吸收或者释放能量,由一种状态变成另一种状态。也就是从一个能级,变化到另一个能级。
跃迁这个词很形象,粒子的能量变化不像人爬楼梯。人可以在一楼,可以在二楼,也可以正在从一楼向扮液察二楼爬。但是粒子不能。粒子从第一能级突然就到了第二能级,而不会经历中间“慢慢爬”的过程。