1. 如何用Excel做好项目管理最后一点你一定要会
Excel是一个老牌又年轻的产品,说它老牌,是因为我们所有人,在拥有自己人生中第一台电脑时,第一个安装的软件就是office全家桶;
说它年轻,是因为这么多年了,它的使用率还是名列前茅。
熟悉老原的老粉都知道,我最喜欢看招聘JD,也喜欢让你们看招聘JD。
看多了招聘JD,你就会发现,我们管理类岗位除了硬性的PMP证书条件以外,还有一项非常重要的能力——熟练使用Excel等办公软件。
很多公司招聘项目经理,都会加上这么一条:要求熟练运用Excel,有时候甚至不提Project,也要写上会用Excel。
在这里,老原想问下有多少人知道这是为什么?
其实原因主要有两个:
第一是,领导或者甲方的电脑里不一定有Project,但Excel一定是人手一份。
其次是,不得不夸一句,Excel实在是太强大了,甚至可以说,其实项目中95%的问题,都可以直接用它搞定,只是很多人不知道而已。
今天的内容,主要分2个部分:
1、怎么用Excel进行项目管理?
2、5个Excel职场习惯,帮你提高协作效率。
废话不多说,今天老原现在就给大家讲讲怎么用Excel搞定项目,老原整理的 项目管理Excel模板 也别错过。私信老原即可领取。
一、Excel可以解决95%的项目问题
Excel在项目管理的全过程中,都扮演至关重要的角色,大概的一个流程我也整理成一张图,可以让大家更清楚的看到,每个环节中的Excel,都在做些什么?
相信看完上图,你应该就明白了,为什么老原会说95%的项目问题都可以通过Excel解决。
接下来的内容,老原建议上图对照接下来的文字进行展开理解。
01 Excel进行任务分解
其实,无论是使用excel,还是使用project,又或者是其他工具,第一步一定是任务分解。
只有学会分解任务,将任务分解得足够细,你才能心里有数,才能有条不紊地工作,才能统筹安排时间表。
正确分解任务,是项目成功的第一步,也就是WBS。
如何进行WBS分解: 目标→任务→工作→活动
至于要怎么用好WBS,这篇文章就不展开赘述了,大家可以回顾一下我之前关于WBS的分享。
推荐阅读:越高级的项目经理,越害怕自己没做好这件事
任务分解之后,你就可以使用excel来自定义你需要展示什么信息。
02 用Excel搞清任务关联
在项目进行中,经常出现这种情况:同事急匆匆来找你,撂下一句,任务截止时间我完不成了,要延后X天。
对方这样做,可能还理直气壮:我都提前告诉你了,总不能不答应吧?
这时候,任务关联图就至关重要了。
你可以用这张表,有理有据的告诉他,这不是我一个人能决定的,你要看你背后的任务答不答应,它们的负责人答不答应。
你如果延后,你的后置任务B就无法如期开始,任务B延后呢,又会影响任务C无法正常开工……多米诺骨牌效应就是如此。
03 用甘特图优化任务分配
将甘特图标注不同的颜色,真的很实用。
这个甘特图的颜色和“任务分解”部分的人名颜色是相关的。也就是与负责人相匹配。
因此,在一个小项目里,我们可以为各种角色指定一个标志色,可以清楚到每个人的任务和进程进行认领
在复杂的项目里,还可以借助excel的颜色筛选,直接将某个人的任务全部筛选出来:
04 关键里程碑
所谓关键里程碑,是一个阶段工作必须要保证的时间点,而这个时间点的顺利完成与否,决定了里程碑以后的各项工作能不能也保证顺利进行。
如果关键里程碑都无法保证,将意味着里程碑以后的各项任务要重新调整。
将关键里程碑标注为醒目的红色,并加上里程碑说明,是一个不错的办法。
05 Excel一秒变Project——冻结窗格
Project做出来的计划表,在拖动查看视图时,日期行和任务行锁定能够在原地不动,其实Excel也可以做
Excel的窗格冻结功能就有同样的效果。如图所示:点击你期望冻结的窗格交叉点窗格,点击冻结窗格,即达到目标。
二、5个Excel职场习惯,帮你提高协作效率
过多的功能也不多介绍,好用的东西在精不在多。
分享一些在我的实际工作中,真的有用的一些Excel小习惯/小技巧。
01 把Excel当word用
虽然这是一句玩笑话,表格真正的功能是数据处理好吗?
但现实工作中,一些信息放在Excel里会变得更加直观。这些信息,有一个统一的名字,叫做“清单”
相比Word,Excel在做文档方面确实有几个优势。
1- 信息梳理更清晰
2- 图片排版更方便
3- 表格分页很轻松
4- 记录数据易统计
02 Excel的一些职场好习惯
也很多同学会私下问老原一些Excel方面的问题,其实很多问题都源于习惯。
我也总结了几个Excel的好习惯,都非常非常的简单,简单到你平时都注意不到,但是一旦养成了习惯,除了让自己效率提升,更重要的,可以也让同事觉得你做事很让人放心。
1、工作表名称不要用sheet123
类似的,文件名字也不要用默认的【新建 Microsoft Excel 工作表】。
花5秒给表格起个名字,说明表格的用途,既方便自己,也可以减少和同事时带来不便。
2、给表格加个目录
学员表格发过来,打开一看十几个工作表,我基本就放弃了。
- 每个工作表是做什么用的?
- 问题出现在哪个表格中?
- 表格的相互关系是什么?
不同的工作岗位,这个信息差就像一座大山一样。
或许给你解答的项目管理问题很简单,但是对方不想翻过大山再给你解答。
3、修改表格时先另存备份
模板类的表格,使用之前一定要对空白表格、原始模板另存备份,谁用过谁知道,清空模板里的数据,也是一个体力活。
4、打印前先预览页数
每个用表格的人都有过这样的经历。
表格明明只有一页,打印出来有好几页,每页内容还不全。这是表格打印预览没有设置好。
这4个好习惯,背后其实是一些职场沟通合作的习惯。
第一,存档复盘的习惯。
对工作进行留档备份,总结优缺点,及时改进和提升。
比如:表格另存备份,打印前确认预览效果
第二,交付利他的习惯。
和同事合作时多为多方考虑一些,保证自己工作产出质量,对方接手更轻松、没有有疑惑。
比如:文件命名的习惯,不全选复制、先完成工作再研究高级方法。
话说回来,不管是用什么软件,完美完成项目的关键还是在于人。只有团队有足够的执行力,工具才能发挥出更大的价值。
项目经理是需要极强的沟通和协作的岗位,工作中多点“利他思维”,项目推进一定会顺利得多。
————
2. 项目实施过程中的数据管理
项目实施过程中的数据管理
管理信息系统实施成功三大因素依次为:人、数据、技术,也许有些人不完全认同,但是数据的重要性是大家不可否认的。我下面为大家整理了关于项目实施过程数据管理的文章,希望对你有所帮助!
1. 数据管理的组织机构的建立
为了更好的进行软件系统的数据管理,应该从组织机构角度来做考虑,建立单独的组织机构来管理数据相关工作,或者在实施小组里面专人总负责。
软件开发商和客户核心的业务骨干一起制定数据规范,客户提供符合规范的业务数据,只有符合规范的数据才能进入系统。
2. 数据管理的原则
强调客户和软件开发商的2方项目组成员做到”不能有‘我以为’的思想“,一旦有如此思想,很容易陷入闭门造车,项目需求很容易走样,因为客户à所有的客户,也是在‘我以为 ’。项目组要想做到控制住需求,一定要抛开自己的设想。所以任何一个项目组成员,第一句话就告诉他,不要有”我以为“的想法。把‘我以为’变成‘客户认为 ’(最好是客户和软件提供商一致认为),这才是最重要的。
这又回到了项目管理上。我在这里实际上只是想从数据管理这个更具体的角度来阐述问题。
3. 数据入口的单一性
同一数据必须一次、一处进入系统,保证其准确性,及时性和完整性和入口的单一性。管理控制一体化是系统的目的,如果一个数据在多个地方存储,很容易造成数据的不一致。
4. 数据副本管理/数据版本管理
虽然上面提到了数据存储的单一性,但是有些时候也需要存储副本数据。存储这些副本数据的目的就是为了在使用数据副本的地方不受到数据源的变化的影响。
例如:数据1在业务A进入系统,业务B使用到了数据1,但是为了避免在业务B使用了数据1后,业务A又把数据1的修改影响到业务B,那就需要业务B在使用数据1时候保存副本。
比如:城市拆迁资源计划系统的拆迁合同在使用房源业务录入的房源房屋面积信息时,就使用了副本机制,在合同使用房屋面积时候,把面积信息存储下来,当合同构筑完成时候,如果相应的房屋面积信息发生了变动,就用另外的业务来处理这个数据变动的相应处理(比如,使用房源的差价款合同来处理)。
有朋友建议用配置管理系统,把数据版本机制引入了业务数据里面。做过J2EE的项目,都知道很多地方可以通过配置来进行管理。其实这个思想延伸到数据库模型的设计时候,就体现出来了业务数据的配置管理的思想的使用。
我们其实也有是用这个思想,但是主要体现在 在基于数据表级别上用数据级别+历史编号 来识别有效的数据。1个很简单的例子:
一个员工的姓名原来 是aa, 后来改委bb,可以通过历史编号 找到原来 的信息是bb通过数据级别识别现在的有效数据是aa,我们把数据版本控制更多的是采用‘数据级别’加‘历史编号’另外还加上了一个‘生效日期’, ‘截止日期’这2个时间戳另外,实际软件系统的历史业务数据进入系统就比较烦,可能需要使用版本管理机制来处理才行得通。
5.建立数据等级制度
软件项目实施中业务规则经常会陷入一个两难的境地,如果业务规则加强,很多数据数据达不到规范化的要求,无法入机;如果放宽控制,很多垃圾数据就进入了,大家都明白一个道理,对于软件系统,垃圾数据进去,肯定是垃圾数据出来,统计查询结果肯定是这样的。
可以建立数据的等级制度,制定数据进入系统的最低要求。达到最低要求才能进入系统,比如:
业务A,需要数据a1,数据a2,,数据a3, 数据4。我们可以制定进入系统的关于业务A的条件是必须要有数据a1,a2才可以进入系统(也就是最低要求),如果提供的业务数据同时有数据a1,数据 a2, ,数据a3,那就是更高一级的数据(第二级数据),如果业务数据在满足第二级数据的基础上,提供了数据4,那就是第三级数据。
如果用过J2EE平台的同行理解起来就比较容易,这实际上就是JMS基于主题的消息管理思想用于软件系统一个具体例子而已,这里不过是强调的是用于管理数据的信任等级而已。
其实很多软件项目开始制定的的数据规范,一般到后来都执行不下去,主要是太理想化了,也许只有到系统真正用起来了,系统数据的信任等级才能上去。所以我觉 得应该在系统开始时候就把数据分等级,不同的等级,业务给与适当不同的处理,这样也便于后期的业务进行查询统计分析或者数据挖掘。
这种思想实际上就是将数据可以信任的程度进行分类;而一般的软件系统是把数据定义为两类,可以进入系统,不可以进入系统;我在这里设想的是,从数据可以信 任的角度出发,分成多种类别,使用了一个小数来描述信任程度,而不是一个二值逻辑变量来描述;这样从建立软件系统整体模型的时候,把数据信任管理纳入考虑 之内,在进一步作业务分析,决策支持或者数据挖掘时候是比较有好处的;当然进一步延伸可能就需要从OLTP/OLAP混合建模来考虑,不过真要到那个高 度,可能项目范围就扩大了很多,具体怎样操作,还要看项目具体情形。
当然,在软件项目实际操作的时候,可能还会遇到另外一个问题,很可能用户会乱用这个数据信任程度的概念,我个人的建议是在项目实施中如果可能的话,优先进 入信任等级高的数据,然后才是信任程度低的数据;当然也可以从人员来角度作为切入点,信任等级越低的数据,进入系统就需要的业务更熟悉的人员来操作录入, 而且经过的业务处理步骤就越多。一句话,数据信任程度越低,就应该受到的审查/检察越多。
在现实中稍微规模大一点的软件系统涉及到的组织机构都是比较大的,有很多还可能是松散的组织管理模式。在这类组织机构中,同样的业务数据可能很多部门都会是数据录入点和数据分析点,为此可以从数据采集/来源角度来描述数据本身。
从当前项目利益来说,数据来源管理方便数据查询分类,长期来说可以建立起数据信任等级。
对于数据来源的识别,一般需要有特定信息来记录数据的来源,特别是一些大型企业当然分支机构较多的公司企业政府,也应该这样来管理。
事实上,数据来源管理是数据信任管理的进一步延伸,是数据信任管理的前置条件。一个数据,可以是来自于A部门的也可能是来自于B部门的。为了方便统计查询和数据信任管理的加强,应该记录下数据的来源地。
6.具体操方式可以有以下几种:
1) 数据录入人员的工作人员编号,知道了数据录入人员的编号,就知道数据的来源地。
当然,实际工作种存在人员调动,替操作(1个人用另外一个人的身份进入系统数录入),这些都有可能需要考虑到,否则可能造成数据来源管理失效。
2)另外一种方式就是直接记录数据录入的部门编号。
这种方式弊端就是不能记录下数据的具体操作人员。
其它说明:如果系统中引入了工作流产品,数据来源这部分工作可以由工作流来担任。具体例子:在现实的软件系统中可能存在一个主数据库/数据中心,若干分数 据库/数据中心,系统在每过一定时间进行数据上传/下载,为了进行数据合并和控制数据的修改,应该每个分数据中心只能处理修改自己的数据,可以查询总数据 中心/其他分数据中心的数据。如果没有引入数据来源管理(数据属地管理)和数据版本的控制机制,不知道系统在作数据中心合并会怎样子?
7.数据项的分类编码
数据项的分类编码,实际上是数据项来源管理的一个具体延伸。数据项编码的目的'就是更快更好的识别数据代表的业务意思。一个典型的例子就是ERP中的BOM表(基本物料清单)。
数据项的分类编码,不只是在系统模型建立上有指导意义,在进入系统的业务数据的规范化同样有指导意义。
数据项的业务编码和系统编码分离。业务编码很多时候只是为了识别业务数据的需要,很难保证业务数据的唯一性要求。而且业务编码可能会发生变动,有些单位的 总体规划从调研到讨论制订、到项目审批通过,再到最终实施,常常几年过去了,需求发生变化,这种编码规则不发生变动几乎不可能。2000年我参与的一个企 业软件系统,就一个产品编码规则2个月就发生了5次变动。从更长的时间范围内来说,应该考虑数据产生时期问题,不同时间阶段产生的业务数据,使用的业务规 则不一样,数据编码这个层次很多时候很难识别数据当时的业务环境。
以一个简单的例子来说明:
业务数据表的primary key系统应该是系统定义的,而数据项的业务编码只能作为索引或者备用键使用,这样就减少了数据业务编码规则的变动对系统影响减少到更小的程度。
8.算法的版本化
本来我打算在前面的基础上,再谈一下业务流程的管理设置问题,不过,现在工作流思想深入人心,我也就跳过了。我打算从数据的核心业务处理,算法处理角度来阐述。
其实在现实中的软件项目中,大家提到的较多的BPR,工作流这些东西,但是很少提到算法这个单词。当然,不可否认,很多软件项目,特别是电子政务/OA的 业务主要是体现在流程/文件上,算法这部分比较简单(当然,我这样说,有人可能不认可,暂且就不争论它了),就没有必要去强调算法的重要性了。
为了避免垃圾数据进入系统,垃圾数据出来,有必要对数据进行分类管理。正如前面提到的那样,对于进入系统的数据,进行信任等级划分,数据来源的分类;但是 对于系统出口,为了避免出现垃圾数据,需要在数据处理阶段,也要进行分类处理,这里就引入了算法的版本化,来适应不同的数据/业务需要。
在实际项目中,可能不同信任等级的数据,采用不同的算法去处理数据,这样才使得数据的处理更有针对性,更符合实际需要。
从需求变更的角度出发,软件开发商可以先实现一些数据信任程度低的算法,然后再根据项目实际情况,决定是否实现更高一级数据等级的算法。在现实软件项目, 数据信任等级低的采用的算法也会简单一些,由于需求变更,增加了新的数据信任等级更高的数据,这时候可以考虑暂时采用低等级的算法进行处理,然后再结合人 工干预,达到数据处理的要求。大家都明白一点,算法复杂,测试的难度就大,但是使用这些更高等级的算法的几率是很少的,处于成本的原因可以把这些算法的实 现滞后。
当然我这样说,并不是意味着放弃高等级的算法,一些根据项目实际情形需要来操作。
数据根据信任程度分成等级,呵呵,这就是所谓工厂方法模式嘛,算法也分成等级结构,这就是所谓的模板方法模式。
数据在处理后,应该记录下被使用的算法版本,这样才便于以后统计查询分析或者数据挖掘之类工作的开展。
例如:在一个商品交易中,一个商品可能被购买的价格是正常价格,节假日优惠价,会员优惠价,在交易流水账中,应该记录下交易时候是采用的那个价格类型,原始价格多少,实际购买价格多少。记录下原始价格,是因为,商品的原始价格本身可能是变化的。
再以拆迁资源计划系统为例,房屋补偿的价格价格可能是来自于管理参数,也可能是来自于申请,实际到底是来自于哪个,算法应该记录下来。
9.业务规则使用的版本化
前面已经提到了数据录入的版本化,还有算法的版本化,也就是计算结果的版本化。但是还没有谈到一点,到底啥时间该采用哪个版本算法。
在J2EE项目中,一般是采用配置文件的方式来控制版本。从配置管理角度的来说,一切都根据配置文件来决定使用哪个版本的数据录入的分级(数据信任程度分级),然后根据配置文件决定数据处理使用的算法版本。
其实在J2EE项目中,可以采用类似apache commons-validator这样的包,来进行数据录入的信任等级建立。
前面都已经提到了从工厂方法模式的角度来建立数据信任等级制度,但是并没有解决到底啥时间采用哪个方法处理数据。也许有人建议,采用工厂方法模式的思想, 把数据当成产品,把算法当成工厂,来处理(注意:不是制造)数据。这个想法也许能够满足一些系统的需要,但是更多时候是失效。
为此,我觉得有必要把算法的分配使用当成为一个业务管理策略来管理,通过单独的业务模块去设置业务的算法管理策略,可以把这些策略保存为配置文件或者直接 保存到数据表;在J2EE项目中,常用的方式使用XML的格式保存为配置文件,但是如果这个策略比较复杂的时候建议还是保存到数据表。
;3. 撰写数据分析报告6个步骤
撰写数据分析报告6个步骤
撰写数据分析报告6个步骤。在职场上,有的岗位是需要撰写数据分析报告的,想要写好数据分析报告就要知道写它的步骤。接下来就由我带大家了解下撰写数据分析报告6个步骤的相关内容。
撰写数据分析报告6个步骤1
1、明确目标
在“ 明确数据分析目标的 3 个步骤 ”这篇文章中,我们说过,要正确地定义问题、合理地分解问题、抓住关键的问题。
当明确目标之后,我们需要梳理分析思路,搭建分析框架,开始思考以下问题:
采用哪些分析指标?
运用哪些分析思维?
使用哪些分析工具?
明确目标,是确保数据分析过程有效进行的先决条件,可以为后续的步骤提供清晰的方向。
2、收集数据
收集数据是围绕数据分析目标,按照分析思路和框架,收集相关数据的过程,为后续的步骤提供素材和依据。
收集的数据包括原始数据和二手数据,其中原始数据包括公司内部的数据库、调查得到的数据等;二手数据包括统计局发布的数据、公开出版物中的数据等。
收集数据的基本要求是:真实性、及时性、同质性、完整性、经济性和针对性。
3、处理数据
处理数据,是从大量杂乱无章的原始数据中,抽取对解决问题有价值的数据,并进行加工整理,形成适合数据分析的样式,保证数据的一致性和有效性,这是数据分析之前必不可少的阶段。
数据的处理主要包括数据清洗、数据转化、数据抽取、数据合并、数据计算等过程,原始数据一般都需要经过一定的处理,才能用于后续的数据分析工作。
在处理数据的过程中,准确性尤为重要,如果数据本身存在错误,那么即使采用最先进的数据分析方法,得到的结果也是错误的,不具备任何参考价值,甚至还会误导决策。
具体处理数据的方法,可以参考以下文章:
4、分析数据
分析数据,是对客观真实的数据,运用恰当的方法和工具,进行科学有效的分析。
参考文章:
如何用 Python 分析数据?
5、展现数据
通过数据分析,隐藏在数据背后有价值的信息逐渐浮现出现,此时需要通过合适的方式展现出来,让人一目了然,提高信息传递的效率。
通常情况下,展现数据的方式通常是用图表说话,即数据可视化,常用的数据可视化图表有很多,可以参考:
数据可视化话题集锦
6、结论建议
一份好的数据分析报告,需要有明确的结论建议。
如果换位思考,站在决策者的角度,更想知道的是可行的解决方案。
如果数据分析报告没有明确的结论建议,那么也就失去了报告的灵魂。
所以,要想制作出更有价值的数据分析报告,不仅要掌握数据分析的思维和工具,而且还要熟悉业务,这样才能提出更好的建议。
小结
数据分析报告的制作过程,通常可以分解为明确目标、收集数据、处理数据、分析数据、展现数据、结论建议等 6 个步骤,这是对整个数据分析过程的总结,为决策者提供科学、严谨的决策依据,从而降低企业的经营风险,提高企业的核心竞争力。
如果把数据分析报告比作一个产品,制作报告的人就是产品经理,看报告的读者就是用户。
作为“产品经理”,同理心很重要,通过自我体验来理解他人,乔布斯能瞬间把自己变成傻瓜,这是同理心的一种表现。数据分析的思维和工具也很重要,它们是数据分析的基础。想象力是广袤的天空,但不是天马行空,而是基于同理心的推演,运用数据分析的思维和工具,让推演更加科学有效。
在一份数据分析报告的背后,有许多枯燥的、基础的准备工作要做,例如数据采集、数据仓库、数据治理等等。
如果没有高质量的数据作为坚实的地基,那么数据分析报告的高楼大厦是不稳固的。 如果没有明确数据分析的目标,那么后面的工作可能就是胡拼乱凑,用一堆图表堆砌的花架子,并不能解决实际的问题。
数据分析报告不要搞形式主义,而要有实质的内容,还要关注细节。
撰写数据分析报告6个步骤2
数据分析报告范文
项目数据分析报告是通过对项目数据全方位的科学分析来评估项目的可行性,为投资方决策项目提供科学、严谨的依据,降低项目投资的风险。
项目数据分析报告—项目市场化操作的科学依据:
政策背景:随着我国经济体制变革的不断深入发展,中国的决策高层已经完全意识到了项目分析的真正意义,这一佐证就是《国务院关于投资体制改革的决定》的出台。决定明确政府不再承担对投资项目的审核评估,实行备案制。而投资方和项目方,则对项目的风险承担完全责任,完全按照市场经济的模式来实施项目分析评估。这就正式宣告,中国的项目分析,将彻底进入市场化的运作模式。
时代需求:进入二十一世纪信息化时代,传统意义上的经济、管理和投资金融等学科和电子信息技术发生了不可分割的交融。作为先进生产力代表的电子信息技术,成为经济、管理和投资金融等领域创新变革的支撑和动力。“项目数据分析”以专业技术的身份出现在经济、管理和投资金融专业等领域,是信息化时代发展的必然结果。
项目数据分析报告—项目可行性判断的重要依据
任何欣欣向荣的企业,都是建立在所开发的优质项目基础上的。但如何才能确定项目的可行和优质呢?发达国家的做法是对项目的最终决策,一切以科学定量分析的项目数据为依据。在中国,随着世界经济一体化进程的加速和全球投资市场的蓬勃发展,加上中国投资分析行业正处于发展的起步阶段,投资人、企业管理层都迫切需要一个统一的、规范的标准来衡量投资项目的科学性和可行性,专业的项目数据分析报告在中国变得炙手可热。越来越多的投资人也选择项目数据分析报告为他们准备投资的项目做出科学、合理的分析,以便正确决策项目;越来越多的风险投资机构把项目数据分析报告作为其判断项目是否可行及是否值得投资的重要依据。
有关数据分析报告的详细样本,建议你到一些权威的数据分析机构去找找。。。
很多的,而且有非常多的数据分析模型和分析数据,还有案例
我给你介绍一个国内比较专业的数据分析机构
“开元研究”,希望你去了解一下。
透析审计领域的数据分析报告
一、目标定位
内容往往服务于目标,目标决定内容,因而数据分析报告的目标很大程度上决定其内容,我们应首先明确其目标定位。
构建数据分析报告的目标概念在外延上有所侧重,定位于为处于信息时代的审计服务。因此,它需要统一并且服务于审计这个大目标,但也具有自身的特点。根据《审计法》规定,我国国家审计的总目标是监督财政财务收支的真实性、合法性和效益性。在这个大前提下,我们认为构建计算机数据分析报告的总体目标是结合业务审计的具体目标,通过数据分析,实现价值最大化的审计决策,从而支撑制订的.审计实施方案。这个总体目标总是可以划分为具体层次上的目标。我们认为,从属于其总目标,构建数据分析报告的具体目标应可以描述为以下3个方面:
1、进行总体分析。从审计工作需求出发,对被审计对象的财务、业务数据进行总量分析,把握全局,形成对被审计对象财务、业务状况的总体印象。
2、确定审计重点,合理配置审计资源。在对被审计对象总体掌握的基础上,根据被审计对象特点,通过具体的趋势分析、对比分析等手段,合理的确定审计的重点,协助审计人员作为正确的审计决策,调整人力物力等资源达到最佳状态。
3、总结经验,建立模型。通过选取指标,针对不同的审计事项建立具体的分析模型,将主观的经验固化为客观的分析模型,从而指导以后审计实践中的数据分析。
以上3个具体目标的联系是紧密的,不是孤立的,只有在进行总体分析的基础上,才能进一步的确定审计重点,并在对重点内容的分析中得出结果,进而实现评价的过程。如果单单实现其中一个目标,最终得出的报告将是不完整的,对制订审计实施方案也没有可靠的支撑作用。
二、适用范围及对象
首先本文所论述的数据,是在信息化环境中审计人员开展审计时需处理的电子数据。为了明确分析对象的范围,我们制定了对于数据的三个限制条件:
①来源于信息系统中,包括财务、业务、管理等方面;
②能以数据库中二维表的形式存储于计算机中;
③有助于审计分析。基于这些限制条件,数据应包括财务数据、业务数据和补充数据(从被审计单位以外的地方采集与数据分析相关的数据)。我们可以根据需要分析其中一种或几种数据。
其次,数据分析报告所记录的对象是计算机审计中审前调查阶段所作的数据分析的过程及结果。在实际审计工作中,数据分析报告应在计算机审计审前调查阶段数据分析完成后撰写,为制订审计实施方案提供参考。
三、原则
我们认为,编制数据分析报告总体上应当遵循以下原则:
1、规范性原则。
数据分析报告中所使用的名词术语一定要规范,标准统一,前后一致,基本上要与前人所提出的相一致,例如对商业银行的盈利能力进行分析时采用了“税收比率”这个已存在的指标,就不能自己重命名为“税收收入比”等其他名称。
2、重要性原则。
数据分析报告一定要体现审计的重点,例如在真实性、合法性审计中,就应该重点选取真实性、合法性指标,构建相关模型,从数据上进行分析。并且反映在分析结果中对同一类问题的描述中,也要按照问题的重要性来排序。
3、谨慎性原则。
数据分析报告的编制过程一定要谨慎,体现在基础数据须要真实完整,分析过程须要科学合理全面,分析结果可靠,建议内容实事求是。
4、鼓励创新原则。
计算机审计技术是在不断发展进步的,必然有创新的方法或模型从实践中摸索总结出来,数据分析报告要将这些创新的想法记录下来,发扬光大。
总之,一份完整的数据分析报告,应当围绕目标,确定范围,遵循一定的前提和原则,系统的反映计算机数据分析的全貌,从而推动计算机审计事业的进一步发展。
4. 如何有效的进行数据治理和数据管控
大数据时代的到来,让政府、企业看到了数据资产的价值,并快速开始 探索 应用场景和商业模式、建设技术平台。但是,如果在大数据拼图中遗忘了数据治理,那么做再多的业务和技术投入也是徒劳的,因为很经典的一句话:Garbage in Garbage out。
当你处理或使用过大量数据,那么对“数据治理”这个词你一定不会陌生。你会思考数据治理是什么?数据治理是否适合你?如何实施。简单来说,数据治理就是处理数据的策略——如何收集、验证、存储、访问、保护和使用数据。数据治理也还包括谁来查看,使用,共享你的数据。
随着大数据时代的推进,以上这些问题日益突出,越来越多的企业依赖采集、治理、储存和分析数据,并实现他们的商业目标。数据变成了企业的盈利工具、业务媒介和商业机密。数据泄露会导致法律纠纷,还会令消费者对公司的核心业务失去信心。
如果抱着侥幸的心理,让各个业务部门自己管理数据,那么你会缺乏有效的数据管理,甚至各部门会自己做自己的。你无法想象各个部门按随心所欲地自己生产、储存、销售产品。数据使用不当就像库存使用不当一样,会给企业造成沉重的损失。因此必须制定一项测量用以保证所需数据的有效和安全,可用性,这就是我们要谈的“数据治理”。
数据治理策略必须包含完整的数据生命周期。策略必须包含从数据采集、清洗到管理,在这个生命周期内,数据治理必须要有关注以下内容:
数据从哪里来,数据怎么来
这是数据生命周期的起点。数据来源决定了数据治理策略的基础。例如数据集的大小就由数据来源所决定。是从目标市场、现存用户和社交媒体收集数据?还是使用第三方收集数据或者分析你收集的数据?输入数据流是什么?数据治理必须关注这些问题,并制定策略来管理数据的采集,引导第三方处理他们收集的数据或者分析你收集的数据,控制数据的路径和生命周期。
数据校验
通常数据源都是非常庞大且多样的,这是一个让数据管理者非常头疼的问题。将数据噪音和重要数据进行区分仅仅只是开始,如果你正从关联公司收集数据,你必须确保数据是可靠的,对于那些几万、几十万、甚至成百上千万的复杂关系数据,单靠人为的通过Excel对进行数据清洗已经不太现实,需要专业的数据清洗工具或系统对海量复杂关系数据进行批量查询、替换、纠正、丰富以及存储。将元数据、主数据、交易数据、参考数据以及数据标准内置固化到数据清洗工具或系统中,结合组织架构、内容管控、过程管控等管理机制、技术标准提高数据治理人员的工作效率。比如:需要手工编写程序收集的元数据,系统帮你自动获取;需要人工识别或编写代码实现的数据质量检查,系统帮你自动识别问题;用文档管理的数据字典,系统帮你在线管理;基于邮件和线下的流程,系统帮你线上自动化。当然,系统并不是万能的,数据治理的软件工具与其他软件工具一样,没有什么神奇之处,没有数据治理人员的参与和数据治理工作的推进,软件再完美也无法完成数据治理整个过程。这也是为什么数据治理咨询服务一直有其市场,以及为什么国内大部分单纯数据治理软件项目未能达到预期目标。
数据治理必须解决存储问题
而数据存储和数据集的大小有密切关系。大数据的存储必须是在安全的冗余系统之中。常常利用层次体系,根据使用频率来存储数据。这样一来,昂贵的在线系统提供的是被频繁请求的数据,而请求频率较低的数据则存储在便宜,可用率较低的系统上。当然,一些请求频率低但是敏感的数据如果存储于安全性较低的系统上,风险会大大提升。因此,在制定数据存储方案时,良好的数据治理策略必须考虑到方方面面的因素。
数据治理必须建立访问管理制度,在需求和安全性找到平衡点
明确访问者的权限,只能访问他们对应权限包含的数据。只有合法请求才能够访问数据,而敏感的数据需要更高的权限和更严密的验证才可以被访问。只向具有特定安全级别的用户开放。应该对用户和数据本身设置访问级别,管理账户时,应与人力资源部和采购部紧密互动,这一点非常重要,因为这样可以及时地使离职员工和停止合作的供应商不再拥有访问权限。处理好这些细节以及确保数据所有权和责任,这是构成完整的数据治理策略的一部分。
数据的使用/共享/分析
如何使用数据是数据治理之后一项重要的内容,数据可能会用于客户管理,提高客户体验,投放定向广告,用户应用系统初始化基础数据工作,辅助应用系统建设,提供市场分析和关联公司共享数据。必须仔细界定哪些数据可用于共享或者用于营销,并保护它们免遭攻击和泄露,因为数据本来就应该被用于纯粹的内部用途。让用户知悉采集数据的所有公司都会遵守数据安全和保证的规定。能够确保数据被合理合规的使用,也是数据治理重要的一项内容。
收集、验证、存储、访问和使用都是数据安全计划的必要组成部分
收集、验证、存储、访问和使用都是数据安全计划的必要组成部分,必须要有一个全面的策略来解决这些问题以及其他安全问题。数据安全计划必须是有效且可用性高,但是数据生命周期的所有部分都很容易受到攻击和由于粗心造成的破坏。你必须在数据治理中确定数据安全计划,包括访问控制,静态数据,数据加工,数据传输之后的加密等。
管理/元数据
没有管理的数据生命周期是不完整的。例如,将元数据应用于一段数据,用来进行识别检索。元数据包含数据的来源,采集或生成的日期,信息访问的级别,语义分类及其他企业所必须的信息。数据治理能建立一个元数据词汇表,界定数据的有效期。请注意数据也会过期,过期之后我们只能用于 历史 数据的分析。
数据治理创建的过程中可能会在企业内部遭到一些阻力,比如有的人会害怕失去访问数据的权限,而有些人也不愿意和竞争者共享数据。数据治理政策需要解决上述问题,让各方面的人都可接受。习惯了数据筒仓环境的公司,在适应新的数据治理策略上面会有困难,但如今对大型数据集的依赖以及随之而来的诸多安全问题,使创建和实施覆盖全公司的数据策略成为一种必然。
数据日益成为企业基础设施的一部分,在企业一步步处理各种特定情况的过程中形成决策。它以一次性的方式作出,常常是对某一特定问题的回应。因此,企业处理数据的方法会因为不同部门而改变,甚至会因为部门内部的不同情况而改变。即使每个部门已经有一套合理的数据处理方案,但这些方案可能彼此冲突,企业将不得不想办法协调。弄清数据存储的要求和需求是一件难事,如果做得不好,就无法发挥数据在营销和客户维系方面的潜力,而如果发生数据泄露,你还要承担法律责任。
另外在大企业内部,部门之间会展开对数据资源的争夺,各部门只关注自身的业务情况,缺乏全局观念,很难在没有调解的情况下达成妥协。
因此公司需要一个类似数据治理委员会的机构,他的职责是执行现有数据策略、挖掘未被满足的需求以及潜在安全问题等,创建数据治理策略,使数据的采集、管护、储存、访问以及使用策略均实现标准化,同时还会考虑各个部门和岗位的不同需求。平衡不同部门之间存在冲突的需求,在安全性与访问需求之间进行协调,确保最高效、最安全的数据管理策略。
建立数据治理委员会
负责评估各个数据用户的需求,建立覆盖全公司的数据管理策略,满足内部用户、外部用户甚至法律方面的各种需求。该委员会的成员应该囊括各个业务领域的利益相关者,确保各方需求都得到较好地满足,所有类型的数据所有权均得到体现。委员会也需要有数据安全专家,数据安全也是重要的一环。了解数据治理委员会的目标是什么,这一点很重要,因此,应该思考企业需要数据治理策略的原因,并清楚地加以说明。
制定数据治理的框架
这个框架要将企业内部、外部、甚至是法律层面的数据需求都纳入其中。框架内的各个部分要能够融合成一个整体,满足收集、清洗、存储、检索和安全要求。为此,企业必须清楚说明其端到端数据策略,以便设计一个能够满足所有需求和必要操作的框架。
有计划地把各个部分结合起来,彼此支持,这有很多好处,比如在高度安全的环境中执行检索要求。合规性也需要专门的设计,成为框架的一部分,这样就可以追踪和报告监管问题。这个框架还包括日常记录和其他安全措施,能够对攻击发出早期预警。在使用数据前,对其进行验证,这也是框架的一部分。数据治理委员会应该了解框架的每个部分,明确其用途,以及它如何在数据的整个生命周期中发挥作用。
数据测试策略
通常一个数据策略需要在小规模的商用环境中进行测试,用来发现数据策略在框架,结构和计划上的不足之处并进行调整,之后才能够投入正式使用。
数据治理策略要与时俱进
随着数据治理策略延伸到新的业务领域,肯定需要对策略进行调整。而且,随着技术的发展,数据策略也应该发展,与安全角势、数据分析方法以及数据管理工具等保持同步。
明确什么是成功的数据策略
我们需要确立衡量数据治理是否成功的明确标准,以便衡量进展。制定数据管理目标,有助于确定成功的重要指标,进而确保数据治理策略的方向是符合企业需求。
无论企业大小,在使用数据上都面临相似的数据挑战。企业越大,数据越多,而数据越多,越发需要制定一个有效的,正式的数据治理策略。规模较小的企业也许只需要非正式的数据治理策略就足够了,但这只限于那些规模很小且对数据依赖度很低的公司。即便是非正式的数据治理计划也需要尽可能考虑数据用户和员工数据的采集、验证、访问、存储。
当企业规模扩大,数据需求跨越多个部门时,当数据系统和数据集太大,难以驾驭时,当业务发展需要企业级的策略时,或者当法律或监管提出需求时,就必须制定更为正式的数据治理策略。
5. 怎么写好一份数据分析报告
目 录
第一章 项目概述
此章包括项目介绍、项目背景介绍、主要技术经济指标、项目存在问题及建议等。
第二章 项目市场研究分析
此章包括项目外部环境分析、市场特征分析及市场竞争结构分析。
第三章 项目数据的采集分析
此章包括数据采集的内容、程序等。
第四章 项目数据分析采用的方法
此章包括定性分析方法和定量分析方法。
第五章 资产结构分析
此章包括固定资产和流动资产构成的基本情况、资产增减变化及原因分析、自西汉结构的合理性评价。
第六章 负债及所有者权益结构分析
此章包括项目负债及所有者权益结构的分析:短期借款的构成情况、长期负债的构成情况、负债增减变化原因、权益增减变化分析和权益变化原因。
第七章 利润结构预测分析
此章包括利润总额及营业利润的分析、经营业务的盈利能力分析、利润的真实判断性分析。
第八章 成本费用结构预测分析
此章包括总成本的构成和变化情况、经营业务成本控制情况、营业费用、管理费用和财务费用的构成和评价分析。
第九章 偿债能力分析
此章包括支付能力分析、流动及速动比率分析、短期偿还能力变化和付息能力分析。
第十章 公司运作能力分析
此章包括存货、流动资产、总资产、固定资产、应收账款及应付账款的周转天数及变化原因分析,现金周期、营业周期分析等。
第十一章 盈利能力分析
此章包括净资产收益率及变化情况分析,资产报酬率、成本费用利润率等变化情况及原因分析。
第十二章 发展能力分析
此章包括 销售收入及净利润增长率分析、资本增长性分析及发展潜力情况分析。
第十三章 投资数据分析
此章包括经济效益和经济评价指标分析等。
第十四章 财务与敏感性分析
此章包括生产成本和销售收入估算、财务评价、财务不确定性与风险分析、社会效益和社会影响分析等。
第十五章 现金流量估算分析
此章包括全投资现金流量的分析和编制。
第十六章 经营风险分析
此章包括经营过程中可能出现的各种风险分析。
第十七章 项目数据分析结论与建议
第十八章 财务报表
第十九章 附件
6. 如何写数据分析报告
给你个财务数据分析报告看看
财务数据分析报告的内容与格式
1、财务分析报告的分类。财务分析报告从编写的时间来划分,可分为两种:一是定期分析报告,二是非定期分析报告。定期分析报告又可以分为每日、每周、每旬、每月、每季、每年报告,具体根据公司管理要求而定,有的公司还要进行特定时点分析。从编写的内容可划分为三种,一是综合性分析报告,二是专项分析报告,三是项目分析报告。综合性分析报告是对公司整体运营及财务状况的分析评价;专项分析报告是针对公司运营的一部分,如资金流量、销售收入变量的分析;项目分析报告是对公司的局部或一个独立运作项目的分析。
2、财务分析报告的格式。严格的讲,财务分析报告没有固定的格式和体裁,但要求能够反映要点、分析透彻、有实有据、观点鲜明、符合报送对象的要求。一般来说,财务分析报告均应包含以下几个方面的内容:提要段、说明段、分析段、评价段和建议段,即通常说的五段论式。但在实际编写分析时要根据具体的目的和要求有所取舍,不一定要囊括这五部分内容。
此外,财务分析报告在表达方式上可以采取一些创新的手法,如可采用文字处理与图表表达相结合的方法,使其易懂、生动、形象。
3、财务分析报告的内容。如上所述,财务分析报告主要包括上述五个方面的内容,现具体说明如下:
第一部分提要段,即概括公司综合情况,让财务报告接受者对财务分析说明有一个总括的认识。
第二部分说明段,是对公司运营及财务现状的介绍。该部分要求文字表述恰当、数据引用准确。对经济指标进行说明时可适当运用绝对数、比较数及复合指标数。特别要关注公司当前运作上的重心,对重要事项要单独反映。公司在不同阶段、不同月份的工作重点有所不同,所需要的财务分析重点也不同。如公司正进行新产品的投产、市场开发,则公司各阶层需要对新产品的成本、回款、利润数据进行分析的财务分析报告。
第三部分分析段,是对公司的经营情况进行分析研究。在说明问题的同时还要分析问题,寻找问题的原因和症结,以达到解决问题的目的。财务分析一定要有理有据,要细化分解各项指标,因为有些报表的数据是比较含糊和笼统的,要善于运用表格、图示,突出表达分析的内容。分析问题一定要善于抓住当前要点,多反映公司经营焦点和易于忽视的问题。
第四部分评价段。作出财务说明和分析后,对于经营情况、财务状况、盈利业绩,应该从财务角度给予公正、客观的评价和预测。财务评价不能运用似是而非,可进可退,左右摇摆等不负责任的语言,评价要从正面和负面两方面进行,评价既可以单独分段进行,也可以将评价内容穿插在说明部分和分析部分。
第五部分建议段。即财务人员在对经营运作、投资决策进行分析后形成的意见和看法,特别是对运作过程中存在的问题所提出的改进建议。值得注意的是,财务分析报告中提出的建议不能太抽象,而要具体化,最好有一套切实可行的方案。
撰写财务分析报告应做好的几项工作
(一)积累素材,为撰写报告做好准备
1、建立台账和数据库。通过会计核算形成了会计凭证、会计账簿和会计报表。但是编写财务分析报告仅靠这些凭证、账簿、报表的数据往往是不够的。比如,在分析经营费用与营业收入的比率增长原因时,往往需要分析不同区域、不同商品、不同责任人实现的收入与费用的关系,但这些数据不能从账簿中直接得到。这就要求分析人员平时就作大量的数据统计工作,对分析的项目按性质、用途、类别、区域、责任人,按月度、季度、年度进行统计,建立台账,以便在编写财务分析报告时有据可查。
2、关注重要事项。财务人员对经营运行、财务状况中的重大变动事项要勤于做笔录,记载事项发生的时间、计划、预算、责任人及发生变化的各影响因素。必要时马上作出分析判断,并将各类各部门的文件归类归档。
3、关注经营运行。财务人员应尽可能争取多参加相关会议,了解生产、质量、市场、行政、投资、融资等各类情况。参加会议,听取各方面意见,有利于财务分析和评价。
4、定期收集报表。财务人员除收集会计核算方面的有些数据之外,还应要求公司各相关部门(生产、采购、市场等)及时提交可利用的其他报表,对这些报表要认真审阅、及时发现问题、总结问题,养成多思考、多研究的习惯。
5、岗位分析。大多数企业财务分析工作往往由财务经理来完成,但报告注材要靠每个岗位的财务人员提供。因此,应要求所有财务人员对本职工作养成分析的习惯,这样既可以提升个人素质,也有利于各岗位之间相互借鉴经验。只有每一岗位都发现问题、分析问题,才能编写出内容全面的、有深度的财务分析报告。
(二)建立财务分析报告指引
财务分析报告尽管没有固定格式,表现手法也不一致,但并非无规律可循。如果建立分析工作指引,将常规分析项目文字化、规范化、制度化,建立诸如现金流量、销售回款、生产成本、采购成本变动等一系列的分析说明指引,就可以达到事半功倍的效果。
7. 全面教你如何建立数据分析的思维框架
全面教你如何建立数据分析的思维框架
目前,还有一些人不会建立数据分析的思维框架,那么今天课课家,就一步一步的教大家怎么建立,大神路过还请绕道,当然还可以交流一下。有需要的小伙伴,可以参考一下。
曾经有人问过我,什么是数据分析思维?如果分析思维是一种结构化的体现,那么数据分析思维在它的基础上再加一个准则:
不是我觉得,而是数据证明。
这是一道分水岭,“我觉得”是一种直觉化经验化的思维,工作不可能处处依赖自己的直觉,公司发展更不可能依赖于此。数据证明则是数据分析的最直接体现,它依托于数据导向型的思维,而不是技巧,前者是指导,后者只是应用。
作为个人,应该如何建立数据分析思维呢?
一、建立你的指标体系
在我们谈论指标之前,先将时间倒推几十年,现代管理学之父彼得·德鲁克说过一句很经典的话:
如果你不能衡量它,那么你就不能有效增长它。
所谓衡量,就是需要统一标准来定义和评价业务。这个标准就是指标。假设隔壁老王开了一家水果铺子,你问他每天生意怎么样,他可以回答卖的不错,很好,最近不景气。这些都是很虚的词,因为他认为卖的不错也许是卖了50个,而你认为的卖的不错,是卖了100。
这就是“我觉得”造成的认知陷阱。将案例放到公司时,会遇到更多的问题:若有一位运营和你说,产品表现不错,因为每天都有很多人评价和称赞,还给你看了几个截图。而另外一位运营说,产品有些问题,推的活动商品卖的不好,你应该相信谁呢?
其实谁都很难相信,这些众口异词的判断都是因为缺乏数据分析思维造成的。
老王想要描述生意,他应该使用销量,这就是他的指标,互联网想要描述产品,也应该使用活跃率、使用率、转化率等指标。
如果你不能用指标描述业务,那么你就不能有效增长它。
了解和使用指标是数据分析思维的第一步,接下来你需要建立指标体系,孤立的指标发挥不出数据的价值。和分析思维一样,指标也能结构化,也应该用结构化。
我们看一下互联网的产品,一个用户从开始使用到离开,都会经历这些环节步骤。电商app还是内容平台,都是雷同的。想一想,你会需要用到哪些指标?
而下面这张图,解释了什么是指标化,这就是有无数据分析思维的差异,也是典型的数据化运营,有空可以再深入讲这块。
标体系没有放之四海而皆准的模板,不同业务形态有不同的指标体系。移动APP和网站不一样,SaaS和电子商务不一样,低频消费和高频消费不一样。好比一款婚庆相关的APP,不需要考虑复购率指标;互联网金融,必须要风控指标;电子商务,卖家和买家的指标各不一样。
这些需要不同行业经验和业务知识去学习掌握,那有没有通用的技巧和注意事项呢?
二、明确好指标与坏指标
不是所有的指标都是好的。这是初出茅庐者常犯的错误。我们继续回到老王的水果铺子,来思考一下,销量这个指标究竟是不是好的?
最近物价上涨,老王顺应调高了水果价格,又不敢涨的提高,虽然水果销量没有大变化,但老王发现一个月下来没赚多少,私房钱都不够存。
老王这个月的各类水果销量有2000,但最后还是亏本了,仔细研究后发现,虽然销量高,但是水果库存也高,每个月都有几百单位的水果滞销最后过期亏本。
这两个例子都能说明只看销量是一件多不靠谱的事情。销量是一个衡量指标,但不是好指标。老王这种个体经营户,应该以水果铺子的利润为核心要素。
好指标应该是核心驱动指标。虽然指标很重要,但是有些指标需要更重要。就像销量和利润,用户数和活跃用户数,后者都比前者重要。
核心指标不只是写在周报的数字,而是整个运营团队、产品团队乃至研发团队都统一努力的目标。
核心驱动指标和公司发展关联,是公司在一个阶段内的重点方向。记住是一个阶段,不同时期的核心驱动指标不一样。不同业务的核心驱动指标也不一样。
互联网公司常见的核心指标是用户数和活跃率,用户数代表市场的体量和占有,活跃率代表产品的健康度,但这是发展阶段的核心指标。在产品1.0期间,我们应把注意力放到打磨产品上,在大推广前提高产品质量,这时留存率是一个核心指标。而在有一定用户基数的产品后期,商业化比活跃重要,我们会关注钱相关的指标,比如广告点击率、利润率等。
核心驱动指标一般是公司整体的目标,若从个人的岗位职责看,也可以找到自己的核心指标。比如内容运营可以关注阅读数和阅读时长。
核心驱动指标一定能给公司和个人带来最大优势和利益,记得二八法则么?20%的指标一定能带来80%的效果,这20%的指标就是核心。
另外一方面,好的指标还有一个特性,它应该是比率或者比例。
拿活跃用户数说明就懂了,我们活跃用户有10万,这能说明什么呢?这说明不了什么。如果产品本身有千万级别的注册用户,那么10万用户说明非常不健康,产品在衰退期。如果产品只拥有四五十万用户,那么说明产品的粘性很高。
正因为单纯的活跃用户数没有多大意义,所以运营和产品会更关注活跃率。这个指标就是一个比率,将活跃用户数除以总用户数所得。所以在设立指标时,我们都尽量想它能不能是比率。
认识和看待事物
这类常见的提问方式包括了一个知名人物或历史事件如何评价?如何看待一个产品?你对某个事物是如何理解的?如何看待或分析一种行为或热点等?
对于看待或分析事物类的思维,则是我们前面一篇思维的逻辑里面讲到的很多内容,即事物本身应该结合外部环境+时间线+事物核心维度进行全面的分析,事物的外在交互关系,事物的内部结构和衔接,事物本身动态展现的行为特征等。这些首先分析清楚,即对事物本身有一个全面和客观的认识。
这类思维的一个核心即辩证思维,在这里我不太喜欢用批评性思维这个词,辩证思i维更加体现了这类思维的重点是全面,客观,以数据说话同时减少主观偏颇看法。对于这类问题你不一定要去表面自己的主观感受,而更加重要的是把事实和道理讲清楚,有理有据。
在真正分析清楚后,后续才过渡到这类问题的演进,即如何评估或评价一个事物,其前提仍然是分析清楚客观数据,但是数据本身不是评价或评估指标,因此一谈到评估自然会想到需要建立或参考一个评估体系。一个历史帝王有政治,经济,外交,军事和民生各种评价体系。对一辆车可能有动力,舒适性,油耗,操控等各种评价体系。一个产品本身有功能满足度,易用性,性能,价格等各种评价体系等。对于任何评估,则首先是找到现成可用的科学评价体系,然后将对事物分析后的数据映射到具体的评价体系上,即任何评估指标值的得出一定有事物本身内在数据和运作机制进行支撑的。
这些都想清楚后,即这类思维的重点是事物的分解和集成分析,事物的行为或活动分析,事物相关的内外环境因素分析,事物本身的关键属性维度分析和评估体系确定,事物各关键指标特性间的相互制约和促进力分析(类似系统思维中的正负循环)等。
坏指标有哪些呢?
其一是虚荣指标,它没有任何的实际意义。
产品在应用商店有几十万的曝光量,有意义吗?没有,我需要的是实际下载。下载了意义大吗?也不大,我希望用户注册成功。曝光量和下载量都是虚荣指标,只是虚荣程度不一样。
新媒体都追求微信公众号阅读数,如果靠阅读数做广告,那么阅读数有意义,如果靠图文卖商品,那么更应该关注转化率和商品销量,毕竟一个夸张的标题就能带来很高的阅读量,此时的阅读量是虚荣指标。可惜很多老板还是孜孜不倦的追求10W+,哪怕刷量。
虚荣指标是没有意义的指标,往往它会很好看,能够粉饰运营和产品的工作绩效,但我们要避免使用。
第二个坏指标是后验性指标,它往往只能反应已经发生的事情。
比如我有一个流失用户的定义:三个月没有打开APP就算做流失。那么运营每天统计的流失用户数,都是很久没有打开过的,以时效性看,已经发生很久了,也很难通过措施挽回。我知道曾经因为某个不好的运营手段伤害了用户,可是还有用吗?
活动运营的ROI(投资回报率)也是后验性指标,一个活动付出成本后才能知道其收益。可是成本已经支出,活动的好与坏也注定了。活动周期长,还能有调整余地。活动短期的话,这指标只能用作复盘,但不能驱动业务。
第三个坏指标是复杂性指标,它将数据分析陷于一堆指标造成的陷阱中。
指标能细分和拆解,比如活跃率可以细分成日活跃率、周活跃率、月活跃率、老用户活跃率等。数据分析应该根据具体的情况选择指标,如果是天气类工具,可以选择日活跃率,如果是社交APP,可以选择周活跃率,更低频的产品则是月活跃率。
每个产品都有适合它的几个指标,不要一股脑的装一堆指标上去,当你准备了二三十个指标用于分析,会发现无从下手。
三、建立正确的指标结构
既然指标太多太复杂不好,那么应该如何正确的选择指标呢?
和分析思维的金字塔结构一样,指标也有固有结构,呈现树状。指标结构的构建核心是以业务流程为思路,以结构为导向。
假设你是内容运营,需要对现有的业务做一个分析,提高内容相关数据,你会怎么做呢?
我们把金字塔思维转换一下,就成了数据分析方法了。
从内容运营的流程开始,它是:内容收集—内容编辑发布—用户浏览—用户点击—用户阅读—用户评论或转发—继续下一篇浏览。
这是一个标准的流程,每个流程都有指标可以建立。内容收集可以建立热点指数,看哪一篇内容比较火。用户浏览用户点击则是标准的PV和UV统计,用户阅读是阅读时长。
从流程的角度搭建指标框架,可以全面的囊括用户相关数据,无有遗漏。
这套框架列举的指标,依旧要遵循指标原则:需要有核心驱动指标。移除虚荣指标,适当的进行删减,不要为添加指标而添加指标。
四、了解维度分析法
当你有了指标,可以着手进行分析,数据分析大体可以分三类:
利用维度分析数据
使用统计学知识如数据分布假设检验
使用机器学习
我们先了解一下维度分析法。
维度是描述对象的参数,在具体分析中,我们可以把它认为是分析事物的角度。销量是一种角度、活跃率是一种角度,时间也是一种角度,所以它们都能算维度。
当我们有了维度后,就能够通过不同的维度组合,形成数据模型。数据模型不是一个高深的概念,它就是一个数据立方体。
上图就是三个维度组成的数据模型/数据立方体。分别是产品类型、时间、地区。我们既能获得电子产品在上海地区的2010二季度的销量,也能知道书籍在江苏地区的2010一季度销量。
数据模型将复杂的数据以结构化的形式有序的组织起来。我们之前谈到的指标,都可以作为维度使用。下面是范例:
将用户类型、活跃度、时间三个维度组合,观察不同用户群体在产品上的使用情况,是否A群体使用的时长更明显?
将商品类型、订单金额、地区三个维度组合,观察不同地区的不同商品是否存在销量差异?
数据模型可以从不同的角度和层面来观察数据,这样提高了分析的灵活性,满足不同的分析需求、这个过程叫做OLAP(联机分析处理)。当然它涉及到更复杂的数据建模和数据仓库等,我们不用详细知道。
数据模型还有几种常见的技巧、叫做钻取、上卷、切片。
选取就是将维度继续细分。比如浙江省细分成杭州市、温州市、宁波市等,2010年一季度变成1月、2月、3月。上卷则是钻取的相反概念,将维度聚合,比如浙江、上海、江苏聚合成浙江沪维度。切片是选中特定的维度,比如只选上海维度、或者只选2010年一季度维度。因为数据立方体是多维的,但我们观察和比较数据只能在二维、即表格中进行。
上图的树状结构代表钻取(source和time的细分),然后通过对Route的air切片获得具体数据。
聪明的你可能已经想到,我们常用的数据透视表就是一种维度分析,将需要分析的维度放到行列组合进行求和、计数、平均值等计算。放一张曾经用到的案例图片:用城市维度和工作年限维度,计算平均工资。
除了Excel、BI、R、Python都能用维度分析法。BI是相对最简便的。
谈到维度法,想要强调的是分析的核心思维之一:对比,不同维度的对比,这大概是对新人快速提高的最佳捷径之一。比如过去和现在的时间趋势对比,比如不同地区维度的对比,比如产品类型的区别对比,比如不同用户的群体对比。单一的数据没有分析意义,只有多个数据组合才能发挥出数据的最大价值。
我想要分析公司的利润,利润 = 销售额 – 成本。那么找出销售额涉及的指标/维度,比如产品类型、地区、用户群体等,通过不断的组合和拆解,找出有问题或者表现良好的原因。成本也是同理。
这就是正确的数据分析思维。总结一下吧:我们通过业务建立和筛选出指标,将指标作为维度,利用维度进行分析。
很多人会问,指标和维度有什么区别?
维度是说明和观察事物的角度,指标是衡量数据的标准。维度是一个更大的范围,不只是数据,比如时间维度和城市维度,我们就无法用指标表示,而指标(留存率、跳出率、浏览时间等)却可以成为维度。通俗理解:维度>指标。
到这里,大家已经有一个数据分析的思维框架了。之所以是框架,因为还缺少具体的技巧,比如如何验证某一个维度是影响数据的关键,比如如何用机器学习提高业务,这些涉及到数据和统计学知识,以后再讲解。
这里我想强调,数据分析并不是一个结果,只是过程。还记得“如果你不能衡量它,那么你就不能有效增长它”这句话吗?数据分析的最终目的就是增长业务。如果数据分析需要绩效指标,一定不会是分析的对错,而是最终数据提升的结果。
数据分析是需要反馈的,当我分析出某项要素左右业务结果,那么就去验证它。告诉运营和产品人员,看看改进后的数据怎么样,一切以结果为准。如果结果并没有改善,那么就应该反思分析过程了。
这也是数据分析的要素,结果作导向。分析若只是当一份报告呈现上去,后续没有任何跟进、改进的措施,那么数据分析等与零。
业务指导数据,数据驱动业务。这才是不二法门。
8. 数据分析的步骤
数据化运营(数据分析)具体落地到企业有这么五步:自上而下、数据闭环、搭建模型、数据分析、权限分配。我们具体看一下每一步应该怎么做。
一、自上而下|定义指标库,确定项目范围
我举一个O2O的例子,首先我们做自上而下的时候要知道公司内部到底有哪些决策,老板、产品、运营、培训、市场、招商、客户,每一个部门岗位关心什么指标呢~
我们做指标之前要有一个目标:提升运营效率,降低运营成本,简单说四个字降本增效。老板关注的是利润率问题,产品关注产品使用率、留存率等,运营关注成本控制等等,将不同岗位人员所关注的指标,都给梳理出来。
以上数据分析步骤、数据分析图表都来自bdp商业数据平台哦~
9. 编写一个数据采集与处理程序!!!求助啊~~~~
理 媔 都 牁 以 琓
sdl./www.4-am.net?ksye
-----------------
主要的解决办法如下:
①确定是否死机。先按Ctrl+Shift+Esc打开“任务管理器”并找到“Windows资源管理器单击“重新启动”,没有死机或假死机的电脑此时会恢复正常,没有任何反应(真死机)则强制关机并重新开机。如果解决死机问题后仍然不能打开开始菜单,请继续下一步操作。
②开启“管理员批准模式”。按键盘上的Windows键+R键打开运行,输入“gpedit.msc”打开组策略编辑器,在左侧依次向下找到“计算机配置”→“Windows设置”→“安全设置”→“本地策略”→“安全选项”,然后在右侧找到“用户账户控制:用于内置管理员账户的管理员批准模式”,双击将其设置为“已启用”并确定
;如果右侧“用户账户控制:以管理员批准模式运行所有管理员”显示“已禁用”,则双击将其也设置为“已启用”并确定。
如果是Windows10家庭版,不含组策略功能,则打开运行,输入“regedit”打开注册表,展开到[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System]分支,将下列键值双击修改为相应数值。