❶ 抽样平均误差的公式是什么
σ=11.377△x = tμx=2×1.1377=2.2754。
先计算出样本指标,然后根据所给条件(重复抽样或不重复抽样)进行抽样平均误差的计算,抽样极限误差的计算,最后根据样本指标和极限误差进行区间估计。
抽样误差就是指样本指标与全及总体指标之间的绝对误差。在进行抽样检查时不可避免会产生抽样误差,因为从总体中随机抽取的样本,其结构不可能和总体完全一致。
例如样本平均数与总体平均数之差| x − X |(注:x与X上都还有一横代表平均数,这里打不出来),样本成数与总体成数之差 | p − P | 。虽然抽样误差不可避免,但可以运用大数定律的数学公式加以精确地计算,确定它具体的数量界限,并可通过抽样设计加以控制。
有关抽样的基本概念:
1、总体和样本:
N n。
总体又称全及总体。指所要认识的研究对象全体。总体单位总数用“N”表示。
样本又称子样。是从全及总体中随机抽取出来,作为代表这一总体的那部分单位组成的集合体。样本单位总数用“n”表示。
2、参数和统计量:
参数是反映总体数量特征的全及指标。
统计量是根据样本数据计算的综合指标。
成数P:总体中具有某种性质的单位数在总体全部单位数中所占的比重。
❷ 统计学 求抽样平均误差
抽样平均误差是抽样平均数或抽样成数的标准差,反映了抽样指标与总体指标的平均误差程度。
多数样本指标与总体指标都有误差,误差有大、有小,有正、有负,抽样平均误差就是将所有的误差综合起来,再求其平均数,所以抽样平均误差是反映抽样误差一般水平的指标。
抽样平均数的平均误差:
重复抽样:此公式说明,抽样平均误差与总体标准差成正比,与样本容量成反比。(当总体标准差未知时,可用样本标准差代替)
抽样极限误差:
含义:抽样极限误差指在进行抽样估计时,根据研究对象的变异程度和分析任务的要求所确定的样本指标与总体指标之间可允许的最大误差范围。
计算方法:它等于样本指标可允许变动的上限或下限与总体指标之差的绝对值。抽样误差的概率度是测量抽样估计可靠程度的一个参数。用符号“ t ”表示。
以上内容参考:网络—抽样平均误差
❸ 抽样误差的公式
抽样误差的公式:s=±√(2500/样本量)*z,其中,当置信度Z=90%时,z=1.65;当Z=95%时,z=1.96;当Z=99%时,z=2.58。
抽样误差是指由于随机抽样的偶然因素使样本各单位的结构不足以代表总体各单位的结构,而引起抽样指标和全局指标的绝对离差。必须指出,抽样误差不同于登记误差,登记误差是在调查过程中由于观察、登记、测量、计算上的差错所引起的误差,是所有统计调查都可能发生的。抽样误差不是由调查失误所引起的,而是随机抽样所特有的误差。
❹ 请通俗的介绍一下“抽样误差”是怎么算出来的
抽样误差是指由于随机抽样的偶然周素使样本各单位的结构对总体各单位结构的代表性差别,而引起的抽样指标和全及指标之间的绝对离差。如抽样平均数与总体平均数的绝对离差,抽样成数与总体成数的绝对离差等等。
必须指出,抽样误差是抽样所特有的误差。凡进行抽样就一定会产生抽样误差,这种误差虽然是不可避免的,但可以控制,所以又称为可控制误差。抽样误差与另外两种误差不同。一种是调查误差,即在调查过程中,由于观察测量、登记、计算上的差错所引起的误差:另一种是系统偏误,即由于违反随机原则,有意地选择较好或较差单位进行调查,造成样本代表性不足所引起的误差。这两种误差是可以防止和避免的。
影响抽样误差大小的因素主要有:
(1)总体单位的标志值的差异程度。 差异程度愈大则抽样误差愈大,反之则愈小。
(2)样本单位数的多少。 在其他条件相同的情况下,样本单位数愈多,则抽样误差愈小。
(3)抽样方法。 抽样方法不同,抽样误差也不相同。一般说,重复抽样比不重复抽样,误差要大些。
(4)抽样调查的组织形式。 抽样调查的组织形式不同,其抽样误差也不相同,而且同一组织形式的合理程度也会影响抽样误差。
❺ 统计学中关于抽样误差计算及推断需求量区间
第一问:抽样误差等于标准差除以样本量的开方。即是抽样误差=√40.46/1400
第二问:置信区间:1-a=0.95, a/2=0.025, n=1400,/x=5.6,σ=√40.46,Za/2=1.96代入公式:
❻ 统计学中,什么是抽样误差影响抽样误差的因素有哪些
抽样误差是指由于随机抽样的偶然周素使样本各单位的结构对总体各单位结构的代表性差别,而引起的抽样指标和全及指标之间的绝对离差。如抽样平均数与总体平均数的绝对离差,抽样成数与总体成数的绝对离差等等。 必须指出,抽样误差是抽样所特有的误差。凡进行抽样就一定会产生抽样误差,这种误差虽然是不可避免的,但可以控制,所以又称为可控制误差。抽样误差与另外两种误差不同。一种是调查误差,即在调查过程中,由于观察测量、登记、计算上的差错所引起的误差:另一种是系统偏误,即由于违反随机原则,有意地选择较好或较差单位进行调查,造成样本代表性不足所引起的误差。这两种误差是可以防止和避免的。 影响抽样误差大小的因素主要有: (1)总体单位的标志值的差异程度。 差异程度愈大则抽样误差愈大,反之则愈小。 (2)样本单位数的多少。 在其他条件相同的情况下,样本单位数愈多,则抽样误差愈小。 (3)抽样方法。 抽样方法不同,抽样误差也不相同。一般说,重复抽样比不重复抽样,误差要大些。 (4)抽样调查的组织形式。 抽样调查的组织形式不同,其抽样误差也不相同,而且同一组织形式的合理程度也会影响抽样误差。
❼ 什么是抽样误差,影响抽样误差的因素有哪些
抽样误差的主要影响因素有:
1、抽样单位的数目
在其他条件不变的情况下,抽样单位的数目越多,抽样误差越小;抽样单位数目越少,抽样误差越大。
2、总体被研究标志的变异程度
在其他条件不变的情况下,总体标志的变异程度越小,抽样误差越小。总体标志的变异程度越大,抽样误差越大。
3、抽样方法的选择
重复抽样和不重复抽样的抽样误差的大小不同。
4、抽样组织方式不同
采用不同的组织方式,会有不同的抽样误差,这是因为不同的抽样组织所抽中的样本,对于总体的代表性也不同。
抽样误差是指由于随机抽样的偶然因素使样本各单位的结构不足以代表总体各单位的结构,而引起抽样指标和全局指标的绝对离差。必须指出,抽样误差不同于登记误差,登记误差是在调查过程中由于观察、登记、测量、计算上的差错所引起的误差,是所有统计调查都可能发生的。
(7)统计数据中怎样确定抽样误差扩展阅读:
抽样误差的表现形式:
1、抽样实际误差
抽样实际误差是指在一次具体的抽样调查中,由于随机因素引起的样本指标与总体指标之间的离差。如样本平均数与总体平均数之间的绝对离差,样本成本与总体成本之间的离差。但是,在抽样中,由于总体指标数值是未知的,因此,抽样实际误差是无法计算的。
2、抽样平均误差
抽样平均误差是指抽样平均数的标准差或抽样成数的标准差。从一个总体中我们可能抽取很多个样本,因此样本指标如样本平均数或样本成本数将随着不同的样本而有不同的取值,它们对总体指标如总体平均数或总体成本数的离差有大有小,即抽样误差是个随机变量。
3、抽样极限误差
抽样极限误差就是指样本指标与总体指标之间的误差范围。
参考资料来源:网络-抽样误差
❽ 什么是抽样误差通过哪些方法可减小抽样误差
抽样误差是样本估计值与被推断的总体真实值之差。由用局部的样本统计量对整体的总体参数作出估计所引起的误差。它是一种随机误差,是由于偶然性因素产生的,不可避免。
抽样误差的大小具有一定的规律,研究和运用抽样误差的规律,是根据样本估计总体时必须的,也是统计分析的重要内容。
方法:抽样的随机误差与三个因素有关。
一是样本容量,样本容量越大,抽样误差越小,这个很好理解。在极端情况下,如果能进行普查,就不会有随机误差了。
二是抽样时是否分层,分层抽样能够降低抽样的随机误差。
三是抽样时是否分群,整群抽样会增加抽样的随机误差。
(8)统计数据中怎样确定抽样误差扩展阅读
抽样误差的大小一般用标准误差衡量。
标准误差(英文:Standard Error),即样本统计量(平均值)的标准差(英文:Standard Deviation),是描述对应的样本统计量抽样分布的离散程度及衡量对应样本统计量抽样误差大小的尺度。
对一个总体多次抽样,每次样本大小都为n,那么每个样本都有自己的平均值,这些平均值的标准差叫做标准误差。标准差是单次抽样得到的,用单次抽样得到的标准差可以估计多次抽样才能得到的标准误差。
随着样本数(或测量次数)n的增大,标准差趋向某个稳定值,即样本标准差s越接近总体标准差σ,而标准误差则随着样本数(或测量次数)n的增大逐渐减小,即样本平均数越接近总体平均数μ、
故在实验中也经常采用适当增加样本数(或测量次数)使n增大的方法来减小实验误差,但样本数太大意义也不大。标准差是最常用的统计量,一般用于表示一组样本变量的分散程度。
标准误差一般用于统计推断中,主要包括假设检验和参数估计,如样本平均数的假设检验、参数的区间估计与点估计等。
❾ 统计学里什么是调查误差,什么是抽样误差
调查误差定义指调查所得的统计数据与调查对象实际数量之间的差异抽样误差是指样本指标值与被推断的总体指标值之差。抽样方法本身所引起的误差。当由总体中随机地抽取样本时,哪个样本被抽到是随机的,由所抽到的样本得到的样本指标x与总体指标μ之间偏差,称为实际抽样误差。当总体相当大时,可能被抽取的样本非常多,不可能列出所有的实际抽样误差,而用平均抽样误差来表征各样本实际抽样误差的平均水平。 http://ke..com/view/3171188.htm?fr=ala0_1http://ke..com/view/558062.htm?fr=ala0_1