1. 统计学专业怎么学
如何学好洞槐统计学丨学习统计学的一些体会和经验
前言:
首先明确一下我是一名在校医学生,但统计学这门课程却伴随了我的大学生涯,刚开始学习统计真的很枯燥,学着学着就想放弃,有时候即使学完了,等到数据放在面前依然不知道怎么处理。
下面谈谈我学习统计的一些体会和经验:
一、系统学习基本统计学方法
1.有效地利用网络资源:
现如今是网络学习时代,学习资源很多,通过搜索引擎就可以找到许多关于统计的公众号、APP,也有配视频学习的,那就更容易理解了。
不要再徘徊了,赶紧加入学习统计学的队伍,开启你的蜕变之路吧!
2. 如何学习数据分析
首先我说说这两种方向共同需要的技术面,当然以下只是按照数据分析入门的标准来写:
1. SQL(数据库),我们都知道数据分析师每天都会处理海量的数据,这些数据来源于数据库,那么怎么从数据库取数据?如何建立两表、三表之间的关系?怎么取到自己想要的特定的数据?等等这些数据选择问题就是你首要考虑的问题,而这些问题都是通过SQL解决的,所以SQL是数据分析的最基础的技能,零基础学习SQL可以阅读这里:SQL教程_w3cschool
2. 统计学基础,数据分析的前提要对数据有感知,数据如何收集?数据整体分布是怎样的?如果有时间维度的话随着时间的变化是怎样的?数据的平均值是什么?数据的最大值最小值指什么?数据相关与回归、时间序列分析和预测等等,这些在网易公开课上倒是有不错的教程:哈里斯堡社区大学公开课:统计学入门_全24集_网易公开课
3.Python或者R的基础,这一点是必备项也是加分项,在数据挖掘方向是必备项,语言相比较工具更加灵活也更加实用。至于学习资料:R语言我不太清楚,Python方向可以在廖雪峰廖老师的博客里看Python教程,面向零基础。
再说说两者有区别的技能树:
1.数据挖掘向
我先打个前哨,想要在一两个月内快速成为数据挖掘向的数据分析师基本不可能,做数据挖掘必须要底子深基础牢,编程语言基础、算法、数据结构、统计学知识样样不能少,而这些不是你自习一两个月就能完全掌握的。
所以想做数据挖掘方向的,一定要花时间把软件工程专业学习的计算机基础课程看完,这些课程包括:数据结构、算法,可以在这里一探究竟:如何学习数据结构?
在此之后你可以动手用Python去尝试实现数据挖掘的十八大算法:数据挖掘18大算法实现以及其他相关经典DM算法
2.产品经理向
产品经理向需要你对业务感知能力强,对数据十分敏感,掌握常用的一些业务分析模型套路,企业经常招聘的岗位是:商业分析、数据运营、用户研究、策略分析等等。这方面的学习书籍就很多,看得越多掌握的方法越多,我说几本我看过的或者很多人推荐的书籍:《增长黑客》、《网站分析实战》、《精益数据分析》、《深入浅出数据分析》、《啤酒与尿布》、《数据之魅》、《Storytelling with Data》
3. 数据统计学习的5个基本流程
数据统计学习的5个基本流程
统计学、大数据应用很广泛,常常被提及!统计学习也有一定的规律流程,下面我们大圣众包小编分享一位朋友关于统计学习流程步骤的看法,看看他怎么说。
统计学习现在市面上谈论到的数据挖掘基本上都是基于统计学习的监督学习或非监督学习问题。尤其以监督学习应用面更广。
统计学习的一般流程
得到一个有限的数据集合
确定所有的学习模型集合
确定模型选择的准则,就是学习的策略
实现求解最优模型的算法并通过学习方法选择最优模型
利用学习得到的最优模型对新数据进行分析或预测
步骤一:得到一个有限的数据集合
涉及到以下多个流程:
1、数据的采集
2、原始数据的格式化、标准化
3、原始去噪,去掉错误的值(而不是误差值,这里又涉及到一个复杂的问题,如何界定错误数据)
4、预处理(针对具体需要研究的问题、抽取相应地特征组成需要研究的数据集合)
步骤二:确定所有的学习模型集合
这个问题取决于我们选择怎么样的学习方法。常见得学习方法有:
1、感知机模型
2、k近邻法
3、朴素贝叶斯法
4、决策树
5、逻辑斯谛回归和最大熵模型
6、支持向量机
7、提升方法AdaBoost
8、EM算法
9、隐马尔可夫模型
10、条件随机场
而且这些算法还可以进行变异、组合然后形成新的算法模型。也是通常认为中数据挖掘比较核心的部分。
步骤三:确定模型选择的策略
一般来说,当你确定了你的学习方法后,在学习的过程中会产生很多个模型。而如何在这些模型中间挑选最优的模型,成为了我们亟待解决的问题。
一般衡量一个模型的优秀程度我们使用两个指标:
1、拟合能力
2、泛化能力
拟合能力
表示模型的计算结果和实际结果的相差程度,我们一般使用风险函数来衡量。而风险函数是损失函数的期望。所以我们其实是使用损失函数来衡量一个模型的期望。
常见的损失函数:
1、0-1损失函数
2、平分损失函数
3、绝对值损失函数
4、对数损失函数
损失函数越小,模型的拟合能力就越好。
泛化能力泛化能力是指模型对新数据的预测能力。一般来说,越复杂的薯陆模型的拟合能力越强,但是泛化能力越弱。所以我们需要选择一个适当复杂度的模型,使其泛化能力和拟合能力都足够强。
而衡量一个模型同时具有较好地泛化能力和拟合能力,我们一般用结构风险函数。
结构风险函数是在风险函数的基础上面加上一个罚项。通过罚项来降低复杂度高的模型的结构风险函数值。从而达到筛选出合适的复杂度的模型的目的。
罚项一般取特征空间w的范数,一般有:
1、L0范数
2、L1范数
3、L2范数
4、核范数…
步骤四:实现求解最优模型的算法并通过学习方法选择最优模型
求解最优模型的算法其实就是求解结构风险函数最小值得算法,即结构风险函数最优化的问题。
如果结构风险函数在我们所关心的区域中是凸函数的话,那么任何局部最小解也是全局最优解。现在已经有稳定,快速的数值计算方法来求二次可微地凸函数的最小值。
然而,很多时候我们没有办法通过结构风险函数直接算出它的最小值。我们只能通过一些迭代的方式获得局部最优解。
常见的通过迭代的方式获得局部最优解的算法有:
1、梯度下降法
2、牛顿法
3、共轭梯度法
4、线性搜索
5、置信域方法
另外还有一些算法:
1、模拟退火
2、遗传算法
3、类免疫算法
4、演化策略
5、差异演化算法
6、微粒群算法
7、神经网络
8、支持向量机
步骤五:利用学习得到的最优模型对新数据进行分析或预测
到这一步一般来说已经成功了,然后往往现实是残酷的,辛辛苦苦20年,一朝回到解放前。
往往学习得到的模型在实际使用过程当中并不是那么的理想。这里面有很多种原因:
有可能是原始数据的原因
有可能是特征选择的原因
有可能是模型的原因
有可能是最优模型算法的问题
有可数颤顷能是代码错误
总之,以上的所有步骤的所有细节都可能导致你的模型不够优秀。这就需要你再次的思考这个问题,去不断的优化你的模型。直到得到一个不错的模型。
小结
其实数据挖掘洞尘涉及的东西远比我上面说的这点东西多的多,我上面提到的还只是监督学习。就光我上面提到的几个步骤。其实每一个步骤都有很多很多东西可以讲,可以研究,工程方面的、算法理论方面的等等等等。
一入数据挖掘深似海,从此奋斗到天明。
数据挖掘还是很有意思的,你可以用机器的力量、数学的力量理解世界的运行规律。去预测他或者利用你研究到的东西做一些有意思的事情。
4. 零基础如何系统学习数据分析
【导读】随着大数据,人工智能的普及,数据分析也是越来越吃香蚂渣了,市场人才需求量很大,吸引理论很多初学者和跨行的零基础小白,那么零基础如何系统学习数据分析?一起来看看吧!
什么是初学者?——如果解析学和数据科学对你来说是全新的领域,你也不知该行业的发展模式,而你又想在这个行业大展拳脚一番,那么初学者就是你。以下这些应该在你的计划之内。
1. R语言也好,Python语言也好,学习一门新的编程语言
我曾见到有同学同时学习R语言和Python语言,最后落得两手空空。这种做法是很致命的。你一定要沉下心来专攻一门。鉴于这两种语言都是开放源代码工具,所以在公司里都有广泛运用。Python被公认为最简单的编程语言,而R语言一直都是最受青睐的统计工具。学习哪一门的决定权在你,因为两个同等出色。
推荐课程:推荐R语言和Python入门课程《Python入门:数据挖掘实战》、《R语言入门》
2. 学习统计学和数学
统计学的内容全都是关于假设和数列,然而没有统计学和数学的知识你很难深入到数据行业里,这是数据科学家的重中之重。
3.一次性完成一门网络开放课程(最难执行)
大规模网络开放课程可以免费获取和学习,可这对你来说也是最难实现的诺言。很多学生通常一次性注册选修很多课程,结果一门也没有圆满完成。所以,你一定要一次专注一门课,完成之后再选下一门。
推荐课程:推荐R语言和python进阶课程:《R语言实战》、《Python进阶:数据挖掘算法》
4.了解业界动态,善于探索和发现岁羡
你要了解业内动态。我们生活在一个变化的世界,一夜之间事物就可能发生重大闷雀悄变化,今日和流行的技术明日就很可能面临淘汰。你一定要多与一些富有经验的专业人士、业内专家交流,预见未来的自己。
以上就是小编今天给大家整理发布的关于“零基础如何系统学习数据分析?”的相关内容,希望对大家有所帮助。
5. 如何系统学习数据分析
不知你是做哪一行的?我的建议是分三步走.
第一步应对目前的工作.按时间要求收集这些数据,保持数据及时有效性这一点非常重要;然后将这些数据分类.与指标或标数相近的数据,或是数值基本相同的数据暂时不要看它,先关注数值培判突出的数据(如最大值或最小值),找相关部门确认这些数值产生的原因,收集起来列成条款,向领导汇报;
第二步建议向质量质量部门的专业人事学习一下新老七种工具.这是日本丰田企业总结质量管理的工具.目前为止应是对复杂统计学的一种最好的简化理解和应用.很简单的.
第三步就是要系统地学习一下统计学,以及一些统计性的软件.如本身的业务没有那么复杂,EXCELL功歼锋能氏中晌完全能应付非专业性的统计业务.
6. 如何学习数据分析
数据分析(Data Analysis)是指用运用统计方法和分析工敬基李具对大量数据进行分析,挖掘出其潜在规律及价值,为经营决策提供科学严谨的理性依据。数据分析将数学原理和计算机技术进行有机结合,一般遵循设计方案、数据采集锋备、数据处理、数据分析、出具报告5个步骤。在实际应用中,数据分析能够利用大量非结构化数据,挖掘出隐藏信息,总结其内在规律,从而帮亮迟助企业进行量化经营,引导企业采取适当的行动,以达到精准营销,理性决策的目的。
如何学习数据分析?
首先,我先简单地将学习数据的人群进行分类:
1.学过计算机但不会统计学(新手)
2.学过统计学但不会计算机(小白)
3.统计学和计算机都不会(菜鸟)
他们的排名是: 菜鸟 < 小白 <= 新手。 无需置疑,菜鸟是最弱的级别,学习起来也是困难重重。小白和新手算是有一定的基础,学习起来会比较轻松一点。 从我个人角度来看,我觉得计算机技术要重于统计学知识,因此我认为学计算机的同学更容易入门。
无论处于什么级别:学习数据分析,你需要做的两件事:
1.一份正确的学习计划
2.一位带你入门的师傅(行业前辈)
学习也需要知道侧重点,需要掌握哪些本领:
①统计学基础
②常用模型理论
③R和PYTHON
④网页分析
⑤数据库技术
⑥实战应用
入门师傅:自认为是靠谱的导师或者行业前辈,真正了解行业发展状态及前景
中国商业联合会数据分析专业委员会,为国务院国有资产监督管理委员会审核同意,中华人民共和国民政部正式批准和登记的中国数据分析行业的行业协会。
典型的数据分析应用主要体现在以下三个方面:
1、探索性数据分析,当数据刚取得时,可能杂乱无章,看不出规律,通过作图、造表、用各种形式的方程拟合,计算某些特征量等手段探索规律性的可能形式,即往什么方向和用何种方式去寻找和揭示隐含在数据中的规律性。
2、模型选定分析,在探索性分析的基础上提出一类或几类可能的模型,然后通过进一步的分析从中挑选一定的模型。
3、推断分析,通常使用数理统计方法对所定模型或估计的可靠程度和精确程度作出推断。