⑴ 传感器通过模数转换器转换完的数据,是不是可以直接通过无线发送到电脑上,由电脑里的程序解出来
1,A/D转换器输出的信号是一种基带数字信号,通常只有1~3个字节,通常不直接由无线设备发送。这里的“直接”,是指你不能把无线发送设备的输入端直接连到A/D转换器的输出端。
2,你需要在A/D转换器与无线发送设备(电台)之间插入一个控制器(单片机),完成编码和电台的收/发状态控制。这里的编码规则可以完全由你决定,比如,如果你把A/D转换的结果按ASCII编码,则另一台电脑收到你的数据后就不用再解码,而可以直接显示了。
⑵ 如何将手机的传感器数据实时传输到电脑上
这肯定要用到单片机或者处理器的。电脑的借口只有USB、串口、并口。这些借口用硬件实现的话很困难,如果用单片机的话就很简单了。简单的思路是这样的,因为你传感器出来的是模拟信号,而计算机只能处理数字信号,所以先把模拟转换成数字信号,这叫模数转换(A/D)。然后利用单片机的各种借口,把数据传送到电脑上面去。例如串口,单片机和电脑都带串口(如果电脑不带串口的可以利用USB转串口模块)。然后再是你电脑的应用程序对数据进行处理。以下是几种借口的优点。USB:速度非常快,以最新的USB3.0协议,最快能达到几百兆每秒。但是操作难度比较大,带USB借口的单片机价格也比较贵。并口:不用说了,现在的电脑一般都不带串口了,而且单片机也不带并口的。串口:推荐用串口,因为几乎大部分单片机都带串口,而且操作简单。
⑶ 模拟信号转换成数字信号,要经过哪4个过程
模数转换包括采样、保持、量化和编码四个过程。在某些特定的时刻对这种模拟信号进行测量叫做采样,量化噪声及接收机噪声等因素的影响,采样速率一般取 fS=2.5fmax。通常采样脉冲的宽度 tw 是很短的,故采样输出是断续的窄脉冲。要把一个采样输出信号数字化,需要将采样输出所得的瞬时模拟信号保持一段时间,这就是保持过程。 量化是将连续幅度的抽样信号转换成离散时间、离散幅度的数字信号,量化的主要问题就是量化误差。假设噪声信号在量化电平中是均匀分布的, 则量化噪声均方值与量化间隔和模数转换器的输入阻抗值有关。编码是将量化后的信号编码成二进制代码输出。这些过程有些是合并进行的,例如,采样和保持就利用一个电路连续完成,量化和编码也是在转换过程中同时实现的, 且所用时间又是保持时间的一部分。
http://ke..com/view/1403603.htm
⑷ 单片机模数转换后是怎样读取数据的,单片机的P0口接ADC0809的D0~D7脚,IN0信号输入,
此外,经典的用法是:
P2口其中一位作为片选信号,分别与WR、RD共同控制通道地址锁存和转换启动、三态输出缓冲器允许输出。如接收并保存数据的指令:
MOVX A,@DPTR
MOV @RO,A
具体要看是P2.?位作为片选位,才可确定外部通道寄存器的首址(即DPTR所指地址)。
⑸ ADC0809芯片启动模拟量采集转换后,请说明可以采用哪几种方式向cpu传送相对应
ADC0809是美国国家半导体公司生产的CMOS工艺8通道,8位逐次逼近式A/D模数转换器。其内部有一个8通道多路开关,它可以根据地址码锁存译码后的信号,只选通8路模拟输入信号中的一个进行A/D转换。目前仅在单片机初学应用设计中较为常见。
ADC0809供应商:拍明芯城
主要特性
1)8路输入通道,8位A/D转换器,即分辨率为8位。
2)具有转换起停控制端。
3)转换时间为100μs(时钟为640KHz时),130μs(时钟为500KHz时)。
4)单个+5V电源供电。
5)模拟输入电压范围0~+5V,不需零点和满刻度校准。
6)工作温度范围为-40~+85摄氏度。
7)低功耗,约15mW。
内部结构
ADC0809是CMOS单片型逐次逼近式A/D转换器,内部结构如图所示,它由8路模拟开关、地址锁存与译码器、比较器、8位开关树型A/D转换器、逐次逼近寄存器、逻辑控制和定时电路组成。
外部特性(引脚功能)
ADC0809芯片有28条引脚,采用双列直插式封装,如图所示。
下面说明各引脚功能:
IN0~IN7:8路模拟量输入端。
2-1~2-8:8位数字量输出端。
ADDA、ADDB、ADDC:3位地址输入线,用于选通8路模拟输入中的一路。
ALE:地址锁存允许信号,输入端,产生一个正脉冲以锁存地址。
START: A/D转换启动脉冲输入端,输入一个正脉冲(至少100ns宽)使其启动(脉冲上升沿使0809复位,下降沿启动A/D转换)。
EOC: A/D转换结束信号,输出端,当A/D转换结束时,此端输出一个高电平(转换期间一直为低电平)。
OE:数据输出允许信号,输入端,高电平有效。当A/D转换结束时,此端输入一个高电平,才能打开输出三态门,输出数字量。
CLK:时钟脉冲输入端。要求时钟频率不高于640KHz。
REF(+)、REF(-):基准电压。
Vcc:电源,单一+5V。
GND:地。
工作过程
首先输入3位地址,并使ALE=1,将地址存入地址锁存器中。此地址经译码选通8路模拟输入之一到比较器。START上升沿将逐次逼近寄存器复位。下降沿启动 A/D转换,之后EOC输出信号变低,指示转换正在进行。直到A/D转换完成,EOC变为高电平,指示A/D转换结束,结果数据已存入锁存器,这个信号可用作中断申请。当OE输入高电平 时,输出三态门打开,转换结果的数字量输出到数据总线上。
转换数据的传送 A/D转换后得到的数据应及时传送给单片机进行处理。数据传送的关键问题是如何确认A/D转换的完成,因为只有确认完成后,才能进行传送。为此可采用下述三种方式。
(1)定时传送方式
对于一种A/D转换器来说,转换时间作为一项技术指标是已知的和固定的。例如ADC0809转换时间为128μs,相当于6MHz的MCS-51单片机共64个机器周期。可据此设计一个延时子程序,A/D转换启动后即调用此子程序,延迟时间一到,转换肯定已经完成了,接着就可进行数据传送。
(2)查询方式
A/D转换芯片有表明转换完成的状态信号,例如ADC0809的EOC端。因此可以用查询方式,测试EOC的状态,即可确认转换是否完成,并接着进行数据传送。
(3)中断方式
把表明转换完成的状态信号(EOC)作为中断请求信号,以中断方式进行数据传送。
不管使用上述哪种方式,只要一旦确定转换完成,即可通过指令进行数据传送。首先送出口地址并以信号有效时,OE信号即有效,把转换数据送上数据总线,供单片机接受。
常见用途
ADC0809与MCS-51单片机的连接主要涉及两个问题。一是8路模拟信号通道的选择,二是A/D转换完成后转换数据的传送。转换数据的传送有定时传送方式、查询方式、中断方式这三种方式。A、B、C的值与被选择的通道之间的关系
⑹ 模数转换的过程
模数转换一般要经过采样、保持和量化、编码等步骤。
1、采样:采样指先用并行方式进行高四位的转换,作为转换后的高四位输出,同时再把数字输出进行D或A转换,恢复成模拟电压。
2、保持和量化:保持和量化把原输入电压与D或A转换器输出的模拟电压相减,其差值再进行低四全的A或D转换。然后将上述两级A或D转换器的数字输出并联后作为总的输出。在转换速度上作出调整,解决了分辨率提高和元件数目刷增的矛盾。
3、编码:编码选用ADC不仅要考虑应用的精度、速度等主要指标,还要考虑输入信
⑺ 模拟信号如何转为数字信号
模拟信号数字化有三个基本过程:
第一个过程是“抽样”,就是以相等的间隔时间来抽取模拟信号的样值,使连续的信号变成离散的信号。
第二个过程叫“量化”,就是把抽取的样值变换为最接近的数字值,表示抽取样值的大小。
第三个过程是“编码”,就是把量化的数值用一组二进制的数码来表示。经过这样三个过程可以完成模拟信号的数字化,这种方法叫作“脉冲编码”。
数字信号传送到接收端后,需要有一个还原的过程,即把收到的数字信号再变回模拟信号,为接收者所能理解。这个过程叫作“数模变换”,使之再现为声音或图像。
(7)模数转换后数据怎样传输扩展阅读
区别联系
(1)模拟信号与数字信号
不同的数据必须转换为相应的信号才能进行传输:模拟数据(模拟量)一般采用模拟信号(Analog Signal),例如用一系列连续变化的电磁波(如无线电与电视广播中的电磁波),或电压信号(如电话传输中的音频电压信号)来表示。
数字数据(数字量)则采用数字信号(Digital Signal),例如用一系列断续变化的电压脉冲(如我们可用恒定的正电压表示二进制数1,用恒定的负电压表示二进制数0),或光脉冲来表示。
当模拟信号采用连续变化的电磁波来表示时,电磁波本身既是信号载体,同时作为传输介质;而当模拟信号采用连续变化的信号电压来表示时,它一般通过传统的模拟信号传输线路(例如电话网、有线电视网)来传输。
当数字信号采用断续变化的电压或光脉冲来表示时,一般则需要用双绞线、电缆或光纤介质将通信双方连接起来,才能将信号从一个节点传到另一个节点。
(2)模拟信号与数字信号之间的相互转换
模拟信号和数字信号之间可以相互转换:模拟信号一般通过PCM脉码调制(Pulse Code Molation)方法量化为数字信号,即让模拟信号的不同幅度分别对应不同的二进制值,例如采用8位编码可将模拟信号量化为2^8=256个量级,实用中常采取24位或30位编码;数字信号一般通过对载波进行移相(Phase Shift)的方法转换为模拟信号。
计算机、计算机局域网与城域网中均使用二进制数字信号,21世纪在计算机广域网中实际传送的则既有二进制数字信号,也有由数字信号转换而得的模拟信号。但是更具应用发展前景的是数字信号。
⑻ 如何通过单片机读取电路中的电压、电流信号,并将这些数据传输到电脑中
通过单片机上的A/D模数转换功能,获取测量点的电压电流值,然后再通过串口方式与电脑进行数据传输,原理就比较简单,但做起来就麻烦些了;
至于如何采集电压、电流,方法有很多,得看具体需求了;