當前位置:首頁 » 網路資訊 » 怎樣找用於神經網路的數據
擴展閱讀
可以馴化動物原始人游戲 2025-05-18 04:06:20
qq里可以打字的圖片 2025-05-18 03:53:44

怎樣找用於神經網路的數據

發布時間: 2022-12-22 20:12:28

Ⅰ 在沒有大量數據的情況下怎樣在神經網路中構造數據,以BP神經網路為例,

你可以用隨機數產生神經網路的訓練和測試數據
如:下面是產生范圍在0.2~2的150*4的矩陣,前三列為輸入數據,第四列為輸出數據
M=random('unif',0.2,2,150,4);
p1=M(1:125,1:3);
t1=M(1:125,4);
p2=M(126:150,1:3 );
t2=M(126:150,4);
p=p1';
t=t1';
[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t);
a=10; %設置隱層節點數
net=newff(minmax(pn),[a,1],{'tansig','purelin'});
net.trainParam.epochs=500;

net.trainParam.lr=0.1;
net.trainParam.goal=10;
net=init(net);
net=train(net,pn,tn);

Ⅱ 人工神經網路概念梳理與實例演示

人工神經網路概念梳理與實例演示
神經網路是一種模仿生物神經元的機器學習模型,數據從輸入層進入並流經激活閾值的多個節點。
遞歸性神經網路一種能夠對之前輸入數據進行內部存儲記憶的神經網路,所以他們能夠學習到數據流中的時間依賴結構。
如今機器學習已經被應用到很多的產品中去了,例如,siri、Google Now等智能助手,推薦引擎——亞馬遜網站用於推薦商品的推薦引擎,Google和Facebook使用的廣告排名系統。最近,深度學習的一些進步將機器學習帶入公眾視野:AlphaGo 打敗圍棋大師李世石事件以及一些圖片識別和機器翻譯等新產品的出現。
在這部分中,我們將介紹一些強大並被普遍使用的機器學習技術。這當然包括一些深度學習以及一些滿足現代業務需求傳統方法。讀完這一系列的文章之後,你就掌握了必要的知識,便可以將具體的機器學習實驗應用到你所在的領域當中。
隨著深層神經網路的精度的提高,語音和圖像識別技術的應用吸引了大眾的注意力,關於AI和深度學習的研究也變得更加普遍了。但是怎麼能夠讓它進一步擴大影響力,更受歡迎仍然是一個問題。這篇文章的主要內容是:簡述前饋神經網路和遞歸神經網路、怎樣搭建一個遞歸神經網路對時間系列數據進行異常檢測。為了讓我們的討論更加具體化,我們將演示一下怎麼用Deeplearning4j搭建神經網路。
一、什麼是神經網路?
人工神經網路演算法的最初構思是模仿生物神經元。但是這個類比很不可靠。人工神經網路的每一個特徵都是對生物神經元的一種折射:每一個節點與激活閾值、觸發的連接。
連接人工神經元系統建立起來之後,我們就能夠對這些系統進行訓練,從而讓他們學習到數據中的一些模式,學到之後就能執行回歸、分類、聚類、預測等功能。
人工神經網路可以看作是計算節點的集合。數據通過這些節點進入神經網路的輸入層,再通過神經網路的隱藏層直到關於數據的一個結論或者結果出現,這個過程才會停止。神經網路產出的結果會跟預期的結果進行比較,神經網路得出的結果與正確結果的不同點會被用來更正神經網路節點的激活閾值。隨著這個過程的不斷重復,神經網路的輸出結果就會無限靠近預期結果。
二、訓練過程
在搭建一個神經網路系統之前,你必須先了解訓練的過程以及網路輸出結果是怎麼產生的。然而我們並不想過度深入的了解這些方程式,下面是一個簡短的介紹。
網路的輸入節點收到一個數值數組(或許是叫做張量多維度數組)就代表輸入數據。例如, 圖像中的每個像素可以表示為一個標量,然後將像素傳遞給一個節點。輸入數據將會與神經網路的參數相乘,這個輸入數據被擴大還是減小取決於它的重要性,換句話說,取決於這個像素就不會影響神經網路關於整個輸入數據的結論。
起初這些參數都是隨機的,也就是說神經網路在建立初期根本就不了解數據的結構。每個節點的激活函數決定了每個輸入節點的輸出結果。所以每個節點是否能夠被激活取決於它是否接受到足夠的刺激強度,即是否輸入數據和參數的結果超出了激活閾值的界限。
在所謂的密集或完全連接層中,每個節點的輸出值都會傳遞給後續層的節點,在通過所有隱藏層後最終到達輸出層,也就是產生輸入結果的地方。在輸出層, 神經網路得到的最終結論將會跟預期結論進行比較(例如,圖片中的這些像素代表一隻貓還是狗?)。神經網路猜測的結果與正確結果的計算誤差都會被納入到一個測試集中,神經網路又會利用這些計算誤差來不斷更新參數,以此來改變圖片中不同像素的重要程度。整個過程的目的就是降低輸出結果與預期結果的誤差,正確地標注出這個圖像到底是不是一條狗。
深度學習是一個復雜的過程,由於大量的矩陣系數需要被修改所以它就涉及到矩陣代數、衍生品、概率和密集的硬體使用問題,但是用戶不需要全部了解這些復雜性。
但是,你也應該知道一些基本參數,這將幫助你理解神經網路函數。這其中包括激活函數、優化演算法和目標函數(也稱為損失、成本或誤差函數)。
激活函數決定了信號是否以及在多大程度上應該被發送到連接節點。階梯函數是最常用的激活函數, 如果其輸入小於某個閾值就是0,如果其輸入大於閾值就是1。節點都會通過階梯激活函數向連接節點發送一個0或1。優化演算法決定了神經網路怎麼樣學習,以及測試完誤差後,權重怎麼樣被更准確地調整。最常見的優化演算法是隨機梯度下降法。最後, 成本函數常用來衡量誤差,通過對比一個給定訓練樣本中得出的結果與預期結果的不同來評定神經網路的執行效果。
Keras、Deeplearning4j 等開源框架讓創建神經網路變得簡單。創建神經網路結構時,需要考慮的是怎樣將你的數據類型匹配到一個已知的被解決的問題,並且根據你的實際需求來修改現有結構。
三、神經網路的類型以及應用
神經網路已經被了解和應用了數十年了,但是最近的一些技術趨勢才使得深度神經網路變得更加高效。
GPUs使得矩陣操作速度更快;分布式計算結構讓計算能力大大增強;多個超參數的組合也讓迭代的速度提升。所有這些都讓訓練的速度大大加快,迅速找到適合的結構。
隨著更大數據集的產生,類似於ImageNet 的大型高質量的標簽數據集應運而生。機器學習演算法訓練的數據越大,那麼它的准確性就會越高。
最後,隨著我們理解能力以及神經網路演算法的不斷提升,神經網路的准確性在語音識別、機器翻譯以及一些機器感知和面向目標的一些任務等方面不斷刷新記錄。
盡管神經網路架構非常的大,但是主要用到的神經網路種類也就是下面的幾種。
3.1前饋神經網路
前饋神經網路包括一個輸入層、一個輸出層以及一個或多個的隱藏層。前饋神經網路可以做出很好的通用逼近器,並且能夠被用來創建通用模型。
這種類型的神經網路可用於分類和回歸。例如,當使用前饋網路進行分類時,輸出層神經元的個數等於類的數量。從概念上講, 激活了的輸出神經元決定了神經網路所預測的類。更准確地說, 每個輸出神經元返回一個記錄與分類相匹配的概率數,其中概率最高的分類將被選為模型的輸出分類。
前饋神經網路的優勢是簡單易用,與其他類型的神經網路相比更簡單,並且有一大堆的應用實例。
3.2卷積神經網路
卷積神經網路和前饋神經網路是非常相似的,至少是數據的傳輸方式類似。他們結構大致上是模仿了視覺皮層。卷積神經網路通過許多的過濾器。這些過濾器主要集中在一個圖像子集、補丁、圖塊的特徵識別上。每一個過濾器都在尋找不同模式的視覺數據,例如,有的可能是找水平線,有的是找對角線,有的是找垂直的。這些線條都被看作是特徵,當過濾器經過圖像時,他們就會構造出特徵圖譜來定位各類線是出現在圖像的哪些地方。圖像中的不同物體,像貓、747s、榨汁機等都會有不同的圖像特徵,這些圖像特徵就能使圖像完成分類。卷積神經網路在圖像識別和語音識別方面是非常的有效的。
卷積神經網路與前饋神經網路在圖像識別方面的異同比較。雖然這兩種網路類型都能夠進行圖像識別,但是方式卻不同。卷積神經網路是通過識別圖像的重疊部分,然後學習識別不同部分的特徵進行訓練;然而,前饋神經網路是在整張圖片上進行訓練。前饋神經網路總是在圖片的某一特殊部分或者方向進行訓練,所以當圖片的特徵出現在其他地方時就不會被識別到,然而卷積神經網路卻能夠很好的避免這一點。
卷積神經網路主要是用於圖像、視頻、語音、聲音識別以及無人駕駛的任務。盡管這篇文章主要是討論遞歸神經網路的,但是卷積神經網路在圖像識別方面也是非常有效的,所以很有必要了解。
3.3遞歸神經網路
與前饋神經網路不同的是,遞歸神經網路的隱藏層的節點里有內部記憶存儲功能,隨著輸入數據的改變而內部記憶內容不斷被更新。遞歸神經網路的結論都是基於當前的輸入和之前存儲的數據而得出的。遞歸神經網路能夠充分利用這種內部記憶存儲狀態處理任意序列的數據,例如時間序列。
遞歸神經網路經常用於手寫識別、語音識別、日誌分析、欺詐檢測和網路安全。
遞歸神經網路是處理時間維度數據集的最好方法,它可以處理以下數據:網路日誌和伺服器活動、硬體或者是醫療設備的感測器數據、金融交易、電話記錄。想要追蹤數據在不同階段的依賴和關聯關系需要你了解當前和之前的一些數據狀態。盡管我們通過前饋神經網路也可以獲取事件,隨著時間的推移移動到另外一個事件,這將使我們限制在對事件的依賴中,所以這種方式很不靈活。
追蹤在時間維度上有長期依賴的數據的更好方法是用內存來儲存重要事件,以使近期事件能夠被理解和分類。遞歸神經網路最好的一點就是在它的隱藏層裡面有「內存」可以學習到時間依賴特徵的重要性。
接下來我們將討論遞歸神經網路在字元生成器和網路異常檢測中的應用。遞歸神經網路可以檢測出不同時間段的依賴特徵的能力使得它可以進行時間序列數據的異常檢測。
遞歸神經網路的應用
網路上有很多使用RNNs生成文本的例子,遞歸神經網路經過語料庫的訓練之後,只要輸入一個字元,就可以預測下一個字元。下面讓我們通過一些實用例子發現更多RNNs的特徵。
應用一、RNNs用於字元生成
遞歸神經網路經過訓練之後可以把英文字元當做成一系列的時間依賴事件。經過訓練後它會學習到一個字元經常跟著另外一個字元(「e」經常跟在「h」後面,像在「the、he、she」中)。由於它能預測下一個字元是什麼,所以它能有效地減少文本的輸入錯誤。
Java是個很有趣的例子,因為它的結構包括很多嵌套結構,有一個開的圓括弧必然後面就會有一個閉的,花括弧也是同理。他們之間的依賴關系並不會在位置上表現的很明顯,因為多個事件之間的關系不是靠所在位置的距離確定的。但是就算是不明確告訴遞歸神經網路Java中各個事件的依賴關系,它也能自己學習了解到。
在異常檢測當中,我們要求神經網路能夠檢測出數據中相似、隱藏的或許是並不明顯的模式。就像是一個字元生成器在充分地了解數據的結構後就會生成一個數據的擬像,遞歸神經網路的異常檢測就是在其充分了解數據結構後來判斷輸入的數據是不是正常。
字元生成的例子表明遞歸神經網路有在不同時間范圍內學習到時間依賴關系的能力,它的這種能力還可以用來檢測網路活動日誌的異常。
異常檢測能夠使文本中的語法錯誤浮出水面,這是因為我們所寫的東西是由語法結構所決定的。同理,網路行為也是有結構的,它也有一個能夠被學習的可預測模式。經過在正常網路活動中訓練的遞歸神經網路可以監測到入侵行為,因為這些入侵行為的出現就像是一個句子沒有標點符號一樣異常。
應用二、一個網路異常檢測項目的示例
假設我們想要了解的網路異常檢測就是能夠得到硬體故障、應用程序失敗、以及入侵的一些信息。
模型將會向我們展示什麼呢?
隨著大量的網路活動日誌被輸入到遞歸神經網路中去,神經網路就能學習到正常的網路活動應該是什麼樣子的。當這個被訓練的網路被輸入新的數據時,它就能偶判斷出哪些是正常的活動,哪些是被期待的,哪些是異常的。
訓練一個神經網路來識別預期行為是有好處的,因為異常數據不多,或者是不能夠准確的將異常行為進行分類。我們在正常的數據里進行訓練,它就能夠在未來的某個時間點提醒我們非正常活動的出現。
說句題外話,訓練的神經網路並不一定非得識別到特定事情發生的特定時間點(例如,它不知道那個特殊的日子就是周日),但是它一定會發現一些值得我們注意的一些更明顯的時間模式和一些可能並不明顯的事件之間的聯系。
我們將概述一下怎麼用 Deeplearning4j(一個在JVM上被廣泛應用的深度學習開源資料庫)來解決這個問題。Deeplearning4j在模型開發過程中提供了很多有用的工具:DataVec是一款為ETL(提取-轉化-載入)任務准備模型訓練數據的集成工具。正如Sqoop為Hadoop載入數據,DataVec將數據進行清洗、預處理、規范化與標准化之後將數據載入到神經網路。這跟Trifacta』s Wrangler也相似,只不過它更關注二進制數據。
開始階段
第一階段包括典型的大數據任務和ETL:我們需要收集、移動、儲存、准備、規范化、矢量話日誌。時間跨度的長短是必須被規定好的。數據的轉化需要花費一些功夫,這是由於JSON日誌、文本日誌、還有一些非連續標注模式都必須被識別並且轉化為數值數組。DataVec能夠幫助進行轉化和規范化數據。在開發機器學習訓練模型時,數據需要分為訓練集和測試集。
訓練神經網路
神經網路的初始訓練需要在訓練數據集中進行。
在第一次訓練的時候,你需要調整一些超參數以使模型能夠實現在數據中學習。這個過程需要控制在合理的時間內。關於超參數我們將在之後進行討論。在模型訓練的過程中,你應該以降低錯誤為目標。
但是這可能會出現神經網路模型過度擬合的風險。有過度擬合現象出現的模型往往會在訓練集中的很高的分數,但是在遇到新的數據時就會得出錯誤結論。用機器學習的語言來說就是它不夠通用化。Deeplearning4J提供正則化的工具和「過早停止」來避免訓練過程中的過度擬合。
神經網路的訓練是最花費時間和耗費硬體的一步。在GPUs上訓練能夠有效的減少訓練時間,尤其是做圖像識別的時候。但是額外的硬體設施就帶來多餘的花銷,所以你的深度學習的框架必須能夠有效的利用硬體設施。Azure和亞馬遜等雲服務提供了基於GPU的實例,神經網路還可以在異構集群上進行訓練。
創建模型
Deeplearning4J提供ModelSerializer來保存訓練模型。訓練模型可以被保存或者是在之後的訓練中被使用或更新。
在執行異常檢測的過程中,日誌文件的格式需要與訓練模型一致,基於神經網路的輸出結果,你將會得到是否當前的活動符合正常網路行為預期的結論。
代碼示例
遞歸神經網路的結構應該是這樣子的:
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder(
.seed(123)
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).iterations(1)
.weightInit(WeightInit.XAVIER)
.updater(Updater.NESTEROVS).momentum(0.9)
.learningRate(0.005)
.gradientNormalization(GradientNormalization.ClipElementWiseAbsoluteValue)
.(0.5)
.list()
.layer(0, new GravesLSTM.Builder().activation("tanh").nIn(1).nOut(10).build())
.layer(1, new RnnOutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
.activation("softmax").nIn(10).nOut(numLabelClasses).build())
.pretrain(false).backprop(true).build();
MultiLayerNetwork net = new MultiLayerNetwork(conf);
net.init();
下面解釋一下幾行重要的代碼:
.seed(123)
隨機設置一個種子值對神經網路的權值進行初始化,以此獲得一個有復驗性的結果。系數通常都是被隨機的初始化的,以使我們在調整其他超參數時仍獲得一致的結果。我們需要設定一個種子值,讓我們在調整和測試的時候能夠用這個隨機的權值。
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).iterations(1)
決定使用哪個最優演算法(在這個例子中是隨機梯度下降法)來調整權值以提高誤差分數。你可能不需要對這個進行修改。
.learningRate(0.005)
當我們使用隨機梯度下降法的時候,誤差梯度就被計算出來了。在我們試圖將誤差值減到最小的過程中,權值也隨之變化。SGD給我們一個讓誤差更小的方向,這個學習效率就決定了我們該在這個方向上邁多大的梯度。如果學習效率太高,你可能是超過了誤差最小值;如果太低,你的訓練可能將會永遠進行。這是一個你需要調整的超參數。

Ⅲ 如何用Python和深度神經網路尋找相似圖像

代碼
首先,讀入TuriCreate軟體包
import turicreate as tc

我們指定圖像所在的文件夾image,讓TuriCreate讀取所有的圖像文件,並且存儲到data數據框
data = tc.image_analysis.load_images('./image/')

我們來看看,data數據框的內容:
data

data包含兩列信息,第一列是圖片的地址,第二列是圖片的長寬描述。
下面我們要求TuriCreate給數據框中每一行添加一個行號。這將作為圖片的標記,方便後面查找圖片時使用,並輸出查看data。
data = data.add_row_number()
data

下面,是重頭戲。我們讓TuriCreate根據輸入的圖片集合,建立圖像相似度判別模型。
model = tc.image_similarity.create(data)

這個語句執行起來,可能需要一些時間。如果你是第一次使用TuriCreate,它可能還需要從網上下載一些數據。請耐心等待。
經過或長或短的等待,模型已經成功建立。
下面,我們來嘗試給模型一張圖片,讓TuriCreate幫我們從目前的圖片集合里,挑出最為相似的10張來。
為了方便,我們就選擇第一張圖片作為查詢輸入。
我們利用show()函數展示一下這張圖片。
tc.Image(data[0]['path']).show()

下面我們來查詢,我們讓模型尋找出與這張圖片最相似的10張。
similar_images = model.query(data[0:1], k=10)

我們把結果存儲在了similar_images變數裡面,下面我們來看看其中都有哪些圖片。
similar_images

返回的結果一共有10行。跟我們的要求一致。
每一行數據,包含4列。分別是:
查詢圖片的標記
獲得結果的標記
結果圖片與查詢圖片的距離
結果圖片與查詢圖片近似程度排序值
有了這些信息,我們就可以查看到底哪些圖片與輸入查詢圖片最為相似了。
注意其中的第一張結果圖片,其實就是我們的輸入圖片本身。考慮它沒有意義。
我們提取全部結果圖片的標記(索引)值,忽略掉第一張(自身)。
similar_image_index = similar_images['reference_label'][1:]

把上面9張圖片的標記在所有圖片的索引列表中過濾出來:
filtered_index = data['id'].apply(lambda x : x in similar_image_index)
filtered_index

驗證完畢以後,請執行以下語句。我們再次調用TuriCreate的explore()函數,展現相似度查詢結果圖片。
data[filtered_index].explore()

Ⅳ 請問神經網路中標准數據集怎樣理解,有什麼作用,怎樣得到的。謝謝

標准數據集是神經網路的訓練基礎。訓練就相當於條件反射中的條件,是已知的條件。來源是「經驗」,是已知的映射組,當在神經網路中載入標准數據集後,神經網路隨機生成一組矩陣,用矩陣處理標准集中的輸入集後,用所得結果與標准輸出集比較,將誤差提出後根據誤差,向減少誤差的方向修改矩陣組,然後重復多次以後,誤差減小到一定程度,標准輸入集輸入網路後能得到標准輸出集,訓練完成。這個矩陣組就是神經網路模型。神經網路就是用電腦在標准數據集上總結經驗,來對新的輸入進行映射

Ⅳ 怎麼用spss神經網路來分類數據

用spss神經網路分類數據方法如下:

神經網路演算法能夠通過大量的歷史數據,逐步建立和完善輸入變數到輸出結果之間的發展路徑,也就是神經網路,在這個神經網路中,每條神經的建立以及神經的粗細(權重)都是經過大量歷史數據訓練得到的,數據越多,神經網路就越接近真實。神經網路建立後,就能夠通過不同的輸入變數值,預測輸出結果。例如,銀行能夠通過歷史申請貸款的客戶資料,建立一個神經網路模型,用於預測以後申請貸款客戶的違約情況,做出是否貸款給該客戶的決策。本篇文章將用一個具體銀行案例數據,介紹如何使用SPSS建立神經網路模型,用於判斷將來申請貸款者的還款能力。

選取歷史數據建立模型,一般會將歷史數據分成兩大部分:訓練集和驗證集,很多分析者會直接按照數據順序將前70%的數據作為訓練集,後30%的數據作為驗證集。如果數據之間可以證明是相互獨立的,這樣的做法沒有問題,但是在數據收集的過程中,收集的數據往往不會是完全獨立的(變數之間的相關關系可能沒有被分析者發現)。因此,通常的做法是用隨機數發生器來將歷史數據隨機分成兩部分,這樣就能夠盡量避免相同屬性的數據被歸類到一個數據集當中,使得建立的模型效果能夠更加優秀。

在具體介紹如何使用SPSS軟體建立神經網路模型的案例之前,先介紹SPSS的另外一個功能:隨機數發生器。SPSS的隨機數發生器常數的隨機數據不是真正的隨機數,而是偽隨機數。偽隨機數是由演算法計算得出的,因此是可以預測的。當隨機種子(演算法參數)相同時,對於同一個隨機函數,得出的隨機數集合是完全相同的。與偽隨機數對應的是真隨機數,它是真正的隨機數,無法預測也沒有周期性。目前大部分晶元廠商都集成了硬體隨機數發生器,例如有一種熱雜訊隨機數發生器,它的原理是利用由導體中電子的熱震動引起的熱雜訊信號,作為隨機數種子。

Ⅵ matlab神經網路工具箱怎麼效果好

導入數據:選擇合適的數據,一定要選數值矩陣形式
在這里插入圖片描述在這里插入圖片描述

進行訓練
在這里插入圖片描述

接下來就點next,選擇輸入輸出,Sample are是選擇以行還是列放置矩陣的,注意調整

在這里插入圖片描述

接下來一直next,在這兒點train

在這里插入圖片描述

查看結果

在這里插入圖片描述

導出代碼:再點next,直到這個界面,先勾選下面的,再點Simple Script生成代碼
在這里插入圖片描述

使用訓練好的神經網路進行預測
使用下方命令,z是需要預測的輸入變數,net就是訓練好的模型

在這里插入圖片描述

再將結果輸出成excel就行啦

在這里插入圖片描述

打開CSDN,閱讀體驗更佳

使用MATLAB載入訓練好的caffe模型進行識別分類_IT遠征軍的博客-CSDN...
在進行下面的實驗前,需要先對數據進行訓練得到caffemodel,然後再進行分類識別 c_demo.m function [scores, maxlabel] = c_demo(im, use_gpu) % Add caffe/matlab to you Matlab search PATH to use matcaffe if exist('/home/...
繼續訪問
MATLAB調用訓練好的KERAS模型_LzQuarter的博客
下載了鏈接中的「kerasimporter.mlpkginstall」文件後,在matlab內用左側的文件管理系統打開會進入一個頁面,在該頁面的右上角有安裝的按鈕,如果之前安裝一直失敗,可以通過這個安裝按鈕的下拉選項選擇僅下載 下載還是有可能要用到VPN,但是相比...
繼續訪問
最新發布 matlab神經網路預測數據,matlab神經網路工具箱
Matlab語言是MathWorks公司推出的一套高性能計算機編程語言,集數學計算、圖形顯示、語言設計於一體,其強大的擴展功能為用戶提供了廣闊的應用空問。它附帶有30多個工具箱,神經網路工具箱就是其中之一。谷歌人工智慧寫作項目:神經網路偽原創。
繼續訪問
matlab神經網路工具箱系統預測
matlab神經網路工具箱系統預測 有原始數據 根據原始數據預測未來十年內的數據
matlab預測控制工具箱
matlab預測控制工具箱,在學習預測控制的過程中翻譯的matlab自帶的示例,希望對大家有所幫助 matlab預測控制工具箱,在學習預測控制的過程中翻譯的matlab自帶的示例,希望對大家有所幫助
用matlab做bp神經網路預測,神經網路預測matlab代碼
我覺得一個很大的原因是你預測給的輸入范圍(2014-)超出了訓練數據的輸入范圍(2006-2013),神經網路好像是具有內插值特性,不能超出,你可以把輸入變數-時間換成其他的變數,比如經過理論分析得出的某些影響因素,然後訓練數據要包括大范圍的情況,這樣可以保證預測其他年份的運量的時候,輸入變數不超出范圍,最後預測的時候給出這幾個影響因素的值,效果會好一點。輸出層是個purelin,線性組合後的輸出層輸出當然也全是幾乎相同的了。輸出層是個purelin,線性組合後的輸出層輸出當然也全是幾乎相同的了。
繼續訪問

BP神經網路預測實例(matlab代碼,神經網路工具箱)
目錄辛烷值的預測matlab代碼實現工具箱實現 參考學習b站: 數學建模學習交流 bp神經網路預測matlab代碼實現過程 辛烷值的預測 【改編】辛烷值是汽油最重要的品質指標,傳統的實驗室檢測方法存在樣品用量大,測試周期長和費用高等問題,不適用於生產控制,特別是在線測試。近年發展起來的近紅外光譜分析方法(NIR),作為一種快速分析方法,已廣泛應用於農業、制葯、生物化工、石油產品等領域。其優越性是無損檢測、低成本、無污染,能在線分析,更適合於生產和控制的需要。實驗採集得到50組汽油樣品(辛烷值已通過其他方法測
繼續訪問

用matlab做bp神經網路預測,matlab人工神經網路預測
ylabel('函數輸出','fontsize',12);%畫出預測結果誤差圖figureplot(error,'-*')title('BP網路預測誤差','fontsize',12)ylabel('誤差','fontsize',12)xlabel('樣本','fontsize',12)。三、訓練函數與學習函數的區別函數的輸出是權值和閾值的增量,訓練函數的輸出是訓練好的網路和訓練記錄,在訓練過程中訓練函數不斷調用學習函數修正權值和閾值,通過檢測設定的訓練步數或性能函數計算出的誤差小於設定誤差,來結束訓練。.
繼續訪問
matlab訓練神經網路模型並導入simulink詳細步驟
之前的神經網路相關文章: Matlab-RBF神經網路擬合數據 Matlab RBF神經網路及其實例 4.深度學習(1) --神經網路編程入門 本文介紹一下怎麼把訓練好的神經網路導入到simulink並使用,假定有兩個變數,一個輸出變數,隨機生成一點數據 x1 = rand(1000,1);x2 = rand(1000,1);x = [x1 x2];y = rand(1000,1); 在App裡面找到神經網路工具箱 點擊Next 選擇對應的數據,注意選擇好對應的輸入和輸出,還
繼續訪問

用matlab做bp神經網路預測,matlab神經網路怎麼預測
它的學習規則是使用最速下降法,通過反向傳播來不斷調整網路的權值和閾值,使網路的誤差平方和最小。Network可以看出,你的網路結構是兩個隱含層,2-3-1-1結構的網路,演算法是traindm,顯示出來的誤差變化為均方誤差值mse。達到設定的網路精度0.001的時候,誤差下降梯度為0.0046,遠大於默認的1e-5,說明此時的網路誤差仍在快速下降,所以可以把訓練精度目標再提高一些,比如設為0.0001或者1e-5。如果你所選用的激活函數是線性函數,那麼就可以先把輸出的表達式寫出來,即權向量和輸入的矩陣乘積。
繼續訪問

matlab訓練模型、導出模型及VC調用模型過程詳解
MATLAB是美國MathWorks公司出品的商業數學軟體,為演算法開發、數據可視化、數據分析以及數值計算等提供了高級計算語言和互動式環境。隨著人工智慧的崛起,MATLAB也添加了自己的機器學習工具包,只需要很少的代碼或命令就能完成模型訓練和測試的過程,訓練好的模型也能方便的導出,供VC等調用。本文主要介紹模型訓練、導出和調用的整個過程。 軟體版本: VC2015,matlab2018a ...
繼續訪問

matlab神經網路預測模型,matlab人工神經網路預測
谷歌人工智慧寫作項目:小發貓matlab帶有神經網路工具箱,可直接調用,建議找本書看看,或者MATLAB論壇找例子常見的神經網路結構。核心調用語句如下:%數據輸入%選連樣本輸入輸出數據歸一化[inputn,inputps]=mapminmax(input_train);[outputn,outputps]=mapminmax(output_train);%%BP網路訓練%%初始化網路結構net=newff(inputn,outputn,[88]);net.trainParam.epochs=100;=0.0
繼續訪問

在Matlab中調用pytorch上訓練好的網路模型
在Matlab中調用pytorch上訓練好的網路模型
繼續訪問

MATLAB_第二篇神經網路學習_BP神經網路
BP神經網路代碼實現1. BP神經網路的簡介和結構參數1.1 BP神經網路的結構組成1.2 BP神經網路訓練界面的參數解讀 非常感謝博主wishes61的分享. 1. BP神經網路的簡介和結構參數 一種按照誤差逆向傳播演算法訓練的多層前饋神經網路用於預測BP神經網路的計算過程:由正向計算過程和反向計算過程組成。 正向傳播過程,輸入模式從輸入層經隱單元層逐層處理,並轉向輸出層,每一層神經元的狀態隻影響下一層神經元的狀態。 如果在輸出層不能得到期望的輸出,則轉入反向傳播,將誤差信號沿原來的連接通路返回,通過修改各
繼續訪問

MATLAB神經網路擬合回歸工具箱Neural Net Fitting的使用方法
本文介紹MATLAB軟體中神經網路擬合(Neural Net Fitting)工具箱的具體使用方法~
繼續訪問

灰色預測工具箱matlab,Matlab灰色預測工具箱——走過數模
2009-07-02 23:05灰色預測幾乎是每年數模培訓必不可少的內容,相對來說也是比較簡單,這里寫了四個函數,方便在Matlab裡面調用,分別是GM(1,1),殘差GM(1,1),新陳代謝GM(1,1),Verhust自己寫得難免有所疏忽,需要的朋友自己找本書本來試驗一下。。Gm(1,1)function [px0,ab,rel]=gm11(x0,number)%[px0,ab,rel]=gm...
繼續訪問
matlab利用訓練好的BP神經網路來預測新數據(先保存網路,再使用網路)
1,保存網路。save ('net') % net為已訓練好的網路,這里把他從workspace保存到工作目錄,顯示為net.mat文檔。 2,使用網路。load ('net') % net為上面保存的網路,這里把他下載到workspace。y_predict = sim(...
繼續訪問
數學建模學習(79):Matlab神經網路工具箱使用,實現多輸入多輸出預測
Matlab神經網路工具箱實現,實現多輸入多輸出預測
繼續訪問

熱門推薦 如何利用matlab做BP神經網路分析(包括利用matlab神經網路工具箱)
利用MATLAB 進行BP神經網路的預測(含有神經網路工具箱) 最近一段時間在研究如何利用預測其銷量個數,在網上搜索了一下,發現了很多模型來預測,比如利用回歸模型、時間序列模型,GM(1,1)模型,可是自己在結合實際的工作內容,發現這幾種模型預測的精度不是很高,於是再在網上進行搜索,發現神經網路模型可以來預測,並且有很多是結合時間序列或者SVM(支持向量機)等組合模型來進...
繼續訪問
bp神經網路預測案例python_詳細BP神經網路預測演算法及實現過程實例
1.具體應用實例。根據表2,預測序號15的跳高成績。表2國內男子跳高運動員各項素質指標序號跳高成績()30行進跑(s)立定三級跳遠()助跑摸高()助跑4—6步跳高()負重深蹲杠鈴()杠鈴半蹲系數100(s)抓舉()12.243.29.63.452.151402.811.05022.333.210.33.752.21203.410.97032.243.09.03.52.21403.511.4504...
繼續訪問
如何調用MATLAB訓練神經網路生成的網路進行預測
如何調用MATLAB訓練神經網路生成的網路問題引出知識准備代碼註解 問題引出 如何存儲和調用已經訓練好的神經網路。 本人前幾天在智能控制學習的過程中也遇到了這樣的問題,在論壇中看了大家的回復,雖然都提到了關鍵的兩個函數「save」和「load」,但或多或少都簡潔了些,讓人摸不著頭腦(呵呵,當然也可能是本人太菜)。通過不斷調試,大致弄明白這兩個函數對神經網路的存儲。下面附上實例給大家做個說明,希望對跟我有一樣問題的朋友有所幫助。 知識准備 如果只是需要在工作目錄下保到當前訓練好的網路,可以在命令窗口 輸入:s
繼續訪問
matlab訓練好的模型怎麼用
神經網路

Ⅶ 用matlab訓練神經網路,如何入excel的數據最好寫個示例代碼,我要導入的數據有幾萬條

數據有點多,不太好導入,速度慢容易崩潰。樓上說用access,但是matlab好像不支持資料庫吧。傳統的就是用xlsread函數。
num = xlsread(filename)
從指定文件名夾讀取,比如說num=xlsread('data.xls'),即從當前程序所在文件夾里,從A1單元格開始讀取,讀取data.xls文件,把數據返回給num。
num = xlsread(filename, -1)
用戶可以使用滑鼠選擇單元格範圍。
num = xlsread(filename, sheet)
選擇所在的sheet,比如說'sheet1'。
num = xlsread(filename, range)
所在的單元格範圍,比如說range='A1:A8'。

還有一種是CSV格式的,這種是逗號分隔符文件,導入速度更快,比xls文件好,你可以試試。

Ⅷ 怎麼調用github提供神經網路訓練的數據

遺傳演算法優化的BP神經網路建模借鑒別人的程序做出的模擬,最近才有時間整理。
目標:
對y=x1^2+x2^2非線性系統進行建模,用1500組數據對網路進行構建網路,500組數據測試網路。由於BP神經網路初始神經元之間的權值和閾值一般隨機選擇,因此容易陷入局部最小值。本方法使用遺傳演算法優化初始神經元之間的權值和閾值,並對比使用遺傳演算法前後的效果。
步驟:
未經遺傳演算法優化的BP神經網路建模
1、 隨機生成2000組兩維隨機數(x1,x2),並計算對應的輸出y=x1^2+x2^2,前1500組數據作為訓練數據input_train,後500組數據作為測試數據input_test。並將數據存儲在data中待遺傳演算法中使用相同的數據。
2、 數據預處理:歸一化處理。
3、 構建BP神經網路的隱層數,次數,步長,目標。
4、 使用訓練數據input_train訓練BP神經網路net。
5、 用測試數據input_test測試神經網路,並將預測的數據反歸一化處理。
6、 分析預測數據與期望數據之間的誤差。
遺傳演算法優化的BP神經網路建模
1、 讀取前面步驟中保存的數據data;
2、 對數據進行歸一化處理;
3、 設置隱層數目;
4、 初始化進化次數,種群規模,交叉概率,變異概率
5、 對種群進行實數編碼,並將預測數據與期望數據之間的誤差作為適應度函數;
6、 循環進行選擇、交叉、變異、計算適應度操作,直到達到進化次數,得到最優的初始權值和閾值;
7、 將得到最佳初始權值和閾值來構建BP神經網路;
8、 使用訓練數據input_train訓練BP神經網路net;
9、 用測試數據input_test測試神經網路,並將預測的數據反歸一化處理;
10、 分析預測數據與期望數據之間的誤差。

Ⅸ 我研究BP神經網路,想問下插做數據如何用,起到什麼作用,求詳解

多看看文獻吧神經網路可以用作分類、聚類、預測等。神經網路需要有一定量的歷史數據,通過歷史數據的訓練,網路可以學習到數據中隱含的知識。在你的問題中,首先要找到某些問題的一些特徵,以及對應的評價數據,用這些數據來訓練神經網路。 雖然BP網路得到了廣泛的應用,但自身也存在一些缺陷和不足,主要包括以下幾個方面的問題。 首先,由於學習速率是固定的,因此網路的收斂速度慢,需要較長的訓練時間。對於一些復雜問題,BP演算法需要的訓練時間可能非常長,這主要是由於學習速率太小造成的,可採用變化的學習速率或自適應的學習速率加以改進。 其次,BP演算法可以使權值收斂到某個值,但並不保證其為誤差平面的全局最小值,這是因為採用梯度下降法可能產生一個局部最小值。對於這個問題,可以採用附加動量法來解決。 再次,網路隱含層的層數和單元數的選擇尚無理論上的指導,一般是根據經驗或者通過反復實驗確定。因此,網路往往存在很大的冗餘性,在一定程度上也增加了網路學習的負擔。 最後,網路的學習和記憶具有不穩定性。也就是說,如果增加了學習樣本,訓練好的網路就需要從頭開始訓練,對於以前的權值和閾值是沒有記憶的。但是可以將預測、分類或聚類做的比較好的權值保存。

Ⅹ 我的數據m行n列z頁,如何用於神經網路

我的數據m行n列z頁,理論上用於神經網路。
人工神經網路是一種從信息處理角度對人腦神經元網路進行抽象從而建立的某種簡單模型,按不同的連接方式組成不同的網路。
其在語音識別、計算機視覺和文本處理等方面取得的突破性成果。