當前位置:首頁 » 文件管理 » python爬蟲可以爬出病毒文件嗎
擴展閱讀
視頻封面上怎樣固定文字 2025-05-20 03:08:52

python爬蟲可以爬出病毒文件嗎

發布時間: 2023-05-06 14:22:11

A. python爬蟲是什麼

世界上80%的爬蟲是基於Python開發的,學好爬蟲技能,可為後續的大數據分析、挖掘、機器學習等提供重要的數據源。
什麼是爬蟲?
網路爬蟲(又被稱為網頁蜘蛛,網路機器人,在FOAF社區中間,更經常的稱為網頁追逐者),是一種按照一定的規則,自動地抓取萬維網信息的程序或者腳本。另外一些不常使用的團漏名字還答局有螞蟻、自動索引、模擬程序或者蠕蟲。
其實通俗的講就是通過程序去獲取web頁面上自己想要的數據,也就是自動抓取數據
爬蟲可以做什麼?
你可以用爬蟲爬圖片,爬取視頻等等你想要爬取的數據,只要你能通過瀏覽器訪問的數據都可以通過爬蟲獲取。
爬蟲的本質是什麼?
模擬瀏覽器打開網頁,獲取網頁中我們想要的那部分數據
瀏覽器打開網頁的過程:
當你在瀏覽器中輸入地址後,經過DNS伺服器找到伺服器主機,向伺服器發送一個請求塌舉爛,伺服器經過解析後發送給用戶瀏覽器結果,包括html,js,css等文件內容,瀏覽器解析出來最後呈現給用戶在瀏覽器上看到的結果
所以用戶看到的瀏覽器的結果就是由HTML代碼構成的,我們爬蟲就是為了獲取這些內容,通過分析和過濾html代碼,從中獲取我們想要資源。

B. python爬蟲技術能幹什麼

1、收集數據

python爬蟲程序可用於收集數據。這也是最直接和最常用的方法。由於爬蟲程序是一個程序,程序運行得非常快,不會因為源做重復的事情而感到疲倦,因此使用爬蟲程序獲取大量數據變得非常簡單和快速。

由於99%以上的網站是基於模板開發的,使用模板可以快速生成大量布局相同、內容不同的頁面。因此,只要為一個頁面開發了爬蟲程序,爬蟲程序也可以對基於同一模板生成的不同頁面進行爬取內容。

2、調研

比如要調研一家電商公司,想知道他們的商品銷售情況。這家公司聲稱每月銷售額達數億元。如果你使用爬蟲來抓取公司網站上所有產品的銷售情況,那麼你就可以計算出公司的實際總銷售額。此外,如果你抓取所有的評論並對其進行分析,你還可以發現網站是否出現了刷單的情況。數據是不會雹散說謊的,特別是海量的數據,人工造假總是會與自然產生的不同。過去,用大量的數據來收集數據是非常困難的,但是現在在爬蟲的幫助下,許多欺騙行為會赤裸裸地暴露在陽光下。

3、刷流量和秒殺

刷流量是python爬蟲的自帶的功能。當一個爬蟲訪問一個網站時,如果爬蟲隱藏得很好,網站無法識別訪問來自爬蟲,那麼它將被視為正常訪問。結果,爬蟲「不小心」刷了網站的流量。

除了刷流量外,還可以參與各種秒殺活動,包括但不限於在雹肆衡各種電商網站上搶商品,優惠券,搶機票和火車票。目前,網路上很多人專門使用爬蟲來參與各種活動並從中賺錢。這種行為一般稱為「薅羊毛」,這種人被稱為「羊毛黨」。不過使用爬蟲來「薅羊毛」進行盈利的行為實際上遊走在法律的灰色地帶,希望大家不要嘗試。

C. 網路爬蟲和病毒有關系嗎

沒有關笑罩系
爬蟲一般指網路爬蟲,是一種按照一定規則自動抓取網頁信息的程序或腳本;木模核馬是一種計算機病毒,是指隱藏在正常程序中的一段具有特殊功能的惡意代碼,是具有破壞和刪除文件,發送密碼,記錄鍵盤和攻碰碼鬧擊Dos等特殊功能的後門程序。

D. python可以爬取什麼數據

一、爬取我們所需要的一線鏈接
channel_extract.py
這里的一線鏈接也就是我們所說的大類鏈接:
from bs4 import BeautifulSoupimport requests

start_url = 'http://lz.ganji.com/wu/'host_url = 'http://lz.ganji.com/'def get_channel_urls(url):
wb_data = requests.get(url)
soup = BeautifulSoup(wb_data.text, 'lxml')
links = soup.select('.fenlei > dt > a') #print(links)
for link in links:
page_url = host_url + link.get('href')
print(page_url)#get_channel_urls(start_url)channel_urls = '''
http://lz.ganji.com/jiaju/
http://lz.ganji.com/rironghuo/
http://lz.ganji.com/shouji/
http://lz.ganji.com/bangong/
http://lz.ganji.com/nongyongpin/
http://lz.ganji.com/jiadian/
http://lz.ganji.com/ershoubijibendiannao/
http://lz.ganji.com/ruanjiantushu/
http://lz.ganji.com/yingyouyunfu/
http://lz.ganji.com/diannao/
http://lz.ganji.com/xianlipin/
http://lz.ganji.com/fushixiaobaxuemao/
http://lz.ganji.com/meironghuazhuang/
http://lz.ganji.com/shuma/
http://lz.ganji.com/laonianyongpin/
http://lz.ganji.com/xuniwupin/
'''

那麼拿我爬取的58同城為例就是爬取了二手市場所有品類的鏈接,也就是我說的大類鏈接;
找到這些鏈接的共同特徵,用函數將其輸出,並作為多行文本儲存起來。
二、獲取我們所需要的詳情頁面的鏈接和詳情信息
page_parsing.py
1、說說我們的資料庫:
先看代碼:
#引入庫文件from bs4 import BeautifulSoupimport requestsimport pymongo #python操作MongoDB的庫import reimport time#鏈接和建立資料庫client = pymongo.MongoClient('localhost', 27017)
ceshi = client['ceshi'] #建ceshi資料庫ganji_url_list = ceshi['ganji_url_list'] #建立表文件ganji_url_info = ceshi['ganji_url_info']123456789101112

2、判斷頁面結構是否和我們想要的頁面結構相匹配,比如有時候會有404頁面;
3、從頁面中提取我們想要的鏈接,也就是每個詳情頁面的鏈接;
這里我們要說的是一個方法就是:
item_link = link.get('href').split('?')[0]12

這里的這個link什麼類型的,這個get方法又是什麼鬼?
後來我發現了這個類型是
<class 'bs4.element.Tab>1

如果我們想要單獨獲取某個屬性,可以這樣,例如我們獲取它的 class 叫什麼
print soup.p['class']
#['title']12

還可以這樣,利用get方法,傳入屬性的名稱,二者是等價的
print soup.p.get('class')#['title']12

下面我來貼上代碼:
#爬取所有商品的詳情頁面鏈接:def get_type_links(channel, num):
list_view = '{0}o{1}/'.format(channel, str(num)) #print(list_view)
wb_data = requests.get(list_view)
soup = BeautifulSoup(wb_data.text, 'lxml')
linkOn = soup.select('.pageBox') #判斷是否為我們所需頁面的標志;
#如果爬下來的select鏈接為這樣:div.pageBox > ul > li:nth-child(1) > a > span 這里的:nth-child(1)要刪掉
#print(linkOn)
if linkOn:
link = soup.select('.zz > .zz-til > a')
link_2 = soup.select('.js-item > a')
link = link + link_2 #print(len(link))
for linkc in link:
linkc = linkc.get('href')
ganji_url_list.insert_one({'url': linkc})
print(linkc) else:

4、爬取詳情頁中我們所需要的信息
我來貼一段代碼:
#爬取趕集網詳情頁鏈接:def get_url_info_ganji(url):
time.sleep(1)
wb_data = requests.get(url)
soup = BeautifulSoup(wb_data.text, 'lxml') try:
title = soup.select('head > title')[0].text
timec = soup.select('.pr-5')[0].text.strip()
type = soup.select('.det-infor > li > span > a')[0].text
price = soup.select('.det-infor > li > i')[0].text
place = soup.select('.det-infor > li > a')[1:]
placeb = [] for placec in place:
placeb.append(placec.text)
tag = soup.select('.second-dt-bewrite > ul > li')[0].text
tag = ''.join(tag.split()) #print(time.split())
data = { 'url' : url, 'title' : title, 'time' : timec.split(), 'type' : type, 'price' : price, 'place' : placeb, 'new' : tag
}
ganji_url_info.insert_one(data) #向資料庫中插入一條數據;
print(data) except IndexError: 21222324252627282930

四、我們的主函數怎麼寫?
main.py
看代碼:
#先從別的文件中引入函數和數據:from multiprocessing import Poolfrom page_parsing import get_type_links,get_url_info_ganji,ganji_url_listfrom channel_extract import channel_urls#爬取所有鏈接的函數:def get_all_links_from(channel):
for i in range(1,100):
get_type_links(channel,i)#後執行這個函數用來爬取所有詳情頁的文件:if __name__ == '__main__':# pool = Pool()# # pool = Pool()# pool.map(get_url_info_ganji, [url['url'] for url in ganji_url_list.find()])# pool.close()# pool.join()#先執行下面的這個函數,用來爬取所有的鏈接:if __name__ == '__main__':
pool = Pool()
pool = Pool()
pool.map(get_all_links_from,channel_urls.split())
pool.close()
pool.join()

五、計數程序
count.py
用來顯示爬取數據的數目;
import timefrom page_parsing import ganji_url_list,ganji_url_infowhile True: # print(ganji_url_list.find().count())
# time.sleep(5)
print(ganji_url_info.find().count())
time.sleep(5)

E. Python爬蟲是什麼

爬蟲一般指網路資源的抓取,通過編程語言撰寫爬蟲工具,抓取自己想要的數據以及內容。而在眾多編程語言之中,Python有豐富的網路抓取模塊,因此成為撰寫爬蟲的首選語言,並引起了學習熱潮。
Python作為一門編程語言而純粹的自由軟體,以簡潔清晰的語豎橋彎法和強制使用空白符號進行語句縮進的特點受到程序員的喜愛。用不同編程語言完成一個任務,C語言一共要寫1000行代碼,Java要寫100行代碼,而Python只需要20行,用Python來完成編程任務代碼量更少,代碼簡潔簡短而且可讀性強。
Python非常適合開發網路爬蟲,因為對比其他靜態編程語言,Python抓取網頁文檔的介面更簡潔;對比其他消握腳本語言,Python的urllib2包提供了較為完整的訪問網頁文檔的API。
Python爬蟲的工作流程是什麼?
Python爬蟲通過URL管理器,判斷是否有待爬URL,如果有待爬URL,通過調度器進行傳遞給下載器,下載URL內容,通過調度器傳送給解釋器,解析URL內容,將有價值數據和新的URL列表通過調度器傳遞給應用程序,輸出價值信息的過程。
Python是一門非余悶常適合開發網路爬蟲的語言,提供了urllib、re、json、pyquery等模塊,同時還有很多成型框架,比如說Scrapy框架、PySpider爬蟲系統等,代碼十分簡潔方便,是新手學習網路爬蟲的首選語言。

F. Python爬取知乎與我所理解的爬蟲與反爬蟲

關於知乎驗證碼登陸的問題,用到了Python上一個重要的圖片處理庫PIL,如果不行,就把圖片存到本地,手動輸入。

通過對知乎登陸是的抓包,可以發現登陸知乎,需要post三個參數,一個是賬號,一個是密碼,一個是xrsf。
這個xrsf隱藏在表單裡面,每次登陸的時候,應該是伺服器隨機產生一個字元串。所有,要模擬登陸的時候,必須要拿到xrsf。

用chrome (或者火狐 httpfox 抓包分析)的結果:

所以,必須要拿到xsrf的數值,注意這是一個動態變化的參數,每次都不一樣。

拿到xsrf,下面就可以模擬登陸了。
使用requests庫的session對象,建立一個會話的好處是,可以把同一個用戶的不同請求聯系起來,直到會話結束都會自動處理cookies。

注意:cookies 是當前目錄的一個文件,這個文件保存了知乎的cookie,如果是第一個登陸,那麼當然是沒有這個文件的,不能通過cookie文件來登陸。必須要輸入密碼。

這是登陸的函數,通過login函數來登陸,post 自己的賬號,密碼和xrsf 到知乎登陸認證的頁面上去,然後得到cookie,將cookie保存到當前目錄下的文件裡面。下次登陸的時候,直接讀取這個cookie文件。

這是cookie文件的內容

以下是源碼:

運行結果:

https://github.com/zhaozhengcoder/Spider/tree/master/spider_hu

反爬蟲最基本的策略:

爬蟲策略:
這兩個都是在http協議的報文段的檢查,同樣爬蟲端可以很方便的設置這些欄位的值,來欺騙伺服器。

反爬蟲進階策略:
1.像知乎一樣,在登錄的表單裡面放入一個隱藏欄位,裡面會有一個隨機數,每次都不一樣,這樣除非你的爬蟲腳本能夠解析這個隨機數,否則下次爬的時候就不行了。
2.記錄訪問的和明ip,統計訪問次數,如果次數太高,可以認為這個ip有問題。

爬蟲進階策略:
1.像這篇文章提到的,爬蟲也可以先解析一下隱藏欄位的值,然後再進行模擬登錄。
2.爬蟲可以使用ip代理池的方式,來避免被發現。同時,也可以爬一會休息一會的方式來降低頻率。另外,伺服器根據ip訪問次數來進行反爬,再ipv6沒有全面普及的時代,這個策略會很容易造成誤傷。(這個是我個人叢賣的理解)。

通過Cookie限制進行反爬蟲滲棚逗:
和Headers校驗的反爬蟲機制類似,當用戶向目標網站發送請求時,會再請求數據中攜帶Cookie,網站通過校驗請求信息是否存在Cookie,以及校驗Cookie的值來判定發起訪問請求的到底是真實的用戶還是爬蟲,第一次打開網頁會生成一個隨機cookie,如果再次打開網頁這個Cookie不存在,那麼再次設置,第三次打開仍然不存在,這就非常有可能是爬蟲在工作了。

反爬蟲進進階策略:
1.數據投毒,伺服器在自己的頁面上放置很多隱藏的url,這些url存在於html文件文件裡面,但是通過css或者js使他們不會被顯示在用戶看到的頁面上面。(確保用戶點擊不到)。那麼,爬蟲在爬取網頁的時候,很用可能取訪問這個url,伺服器可以100%的認為這是爬蟲乾的,然後可以返回給他一些錯誤的數據,或者是拒絕響應。

爬蟲進進階策略:
1.各個網站雖然需要反爬蟲,但是不能夠把網路,谷歌這樣的搜索引擎的爬蟲給幹了(幹了的話,你的網站在網路都說搜不到!)。這樣爬蟲應該就可以冒充是網路的爬蟲去爬。(但是ip也許可能被識破,因為你的ip並不是網路的ip)

反爬蟲進進進階策略:
給個驗證碼,讓你輸入以後才能登錄,登錄之後,才能訪問。

爬蟲進進進階策略:
圖像識別,機器學習,識別驗證碼。不過這個應該比較難,或者說成本比較高。

參考資料:
廖雪峰的python教程
靜覓的python教程
requests庫官方文檔
segmentfault上面有一個人的關於知乎爬蟲的博客,找不到鏈接了

G. python爬蟲是什麼

Python爬蟲是指在某種原因進行互聯網請求獲取信息

H. python爬蟲可以做什麼

1、收集數據
Python爬蟲程序可用於收集數據,這是最直接和最常用的方法。由於爬蟲程序是一個程序,程序運行得非常快,不會因為重復的事情而感到疲倦,因此使用爬蟲程序獲取大量數據變得非常簡單、快速。
2、數據儲存
Python爬蟲可以將從各個網站收集的數據存入原始頁面資料庫。其中的頁面數據與用戶瀏覽器得到的HTML是完全一樣的。注意:搜索引擎蜘蛛在抓取頁面時,也做一定的重復內容檢測,一旦遇到訪問許可權很低的網站上有大量抄襲、採集或者復制的內容,很可能就不再爬行。
3、網頁預處理
Python爬蟲可以將爬蟲抓取回來的頁面,進行各種步驟的預處理。比如提取文字、中文分詞、消除噪音、索引處理、特殊文字處理等。
4、提供檢索服務、網站排名
Python爬蟲在對信息進行組織和處理之後,為用戶提供關鍵字檢索服務,將用戶檢索相關的信息展示給用戶。同時可以根據頁面型凳的PageRank
值來進行網站排名,這樣Rank值高的網站在搜索結果中會排名較絕侍前,當然也可以直接使用Money購買搜索引擎網站排名。
5、科學研究
在線人類行為、在線社群演化、人類動力學研究、卜宏旅計量社會學、復雜網路、數據挖掘等領域的實證研究都需要大量數據,Python爬蟲是收集相關數據的利器。

I. Python爬蟲可以爬取什麼

Python爬蟲可以爬取的東西有很多,Python爬蟲怎麼學?簡單的分析下:

如果你仔細觀察,就不難發現,懂爬蟲、學習爬蟲的人越來越多,一方面,互聯網可以獲取的數據越來越多,另一方面,像 Python這樣的編程語言提供越來越多的優秀工具,讓爬蟲變得簡單、容易上手。

利用爬蟲我們可以獲取大量的價值數據,從而獲得感性認識中不能得到的信息,比如:

知乎:爬取優質答案,為你篩選出各話題下最優質的內容。

淘寶、京東:抓取商品、評論及銷量數據,對各種商品及用戶的消費場景進行分析。

安居客、鏈家:抓取房產買賣及租售信息,分析房價變化趨勢、做不同區域的房價分析。

拉勾網、智聯:爬取各類職位信息,分析各行業人才需求情況及薪資水平。

雪球網:抓取雪球高回報用戶的行為,對股票市場進行分析和預測。

爬蟲是入門Python最好的方式,沒有之一。Python有很多應用的方向,比如後台開發、web開發、科學計算等等,但爬蟲對於初學者而言更友好,原理簡單,幾行代碼就能實現基本的爬蟲,學習的過程更加平滑,你能體會更大的成就感。

掌握基本的爬蟲後,你再去學習Python數據分析、web開發甚至機器學習,都會更得心應手。因為這個過程中,Python基本語法、庫的使用,以及如何查找文檔你都非常熟悉了。

對於小白來說,爬蟲可能是一件非常復雜、技術門檻很高的事情。比如有人認為學爬蟲必須精通 Python,然後哼哧哼哧系統學習 Python 的每個知識點,很久之後發現仍然爬不了數據;有的人則認為先要掌握網頁的知識,遂開始 HTMLCSS,結果入了前端的坑,瘁……

但掌握正確的方法,在短時間內做到能夠爬取主流網站的數據,其實非常容易實現,但建議你從一開始就要有一個具體的目標。

在目標的驅動下,你的學習才會更加精準和高效。那些所有你認為必須的前置知識,都是可以在完成目標的過程中學到的。這里給你一條平滑的、零基礎快速入門的學習路徑。

1.學習 Python 包並實現基本的爬蟲過程

2.了解非結構化數據的存儲

3.學習scrapy,搭建工程化爬蟲

4.學習資料庫知識,應對大規模數據存儲與提取

5.掌握各種技巧,應對特殊網站的反爬措施

6.分布式爬蟲,實現大規模並發採集,提升效率

學習 Python 包並實現基本的爬蟲過程

大部分爬蟲都是按「發送請求——獲得頁面——解析頁面——抽取並儲存內容」這樣的流程來進行,這其實也是模擬了我們使用瀏覽器獲取網頁信息的過程。

Python中爬蟲相關的包很多:urllib、requests、bs4、scrapy、pyspider 等,建議從requests+Xpath 開始,requests 負責連接網站,返回網頁,Xpath 用於解析網頁,便於抽取數據。

如果你用過 BeautifulSoup,會發現 Xpath 要省事不少,一層一層檢查元素代碼的工作,全都省略了。這樣下來基本套路都差不多,一般的靜態網站根本不在話下,豆瓣、糗事網路、騰訊新聞等基本上都可以上手了。

當然如果你需要爬取非同步載入的網站,可以學習瀏覽器抓包分析真實請求或者學習Selenium來實現自動化,這樣,知乎、時光網、貓途鷹這些動態的網站也可以迎刃而解。

了解非結構化數據的存儲

爬回來的數據可以直接用文檔形式存在本地,也可以存入資料庫中。

開始數據量不大的時候,你可以直接通過 Python 的語法或 pandas 的方法將數據存為csv這樣的文件。

當然你可能發現爬回來的數據並不是干凈的,可能會有缺失、錯誤等等,你還需要對數據進行清洗,可以學習 pandas 包的基本用法來做數據的預處理,得到更干凈的數據。

學習 scrapy,搭建工程化的爬蟲

掌握前面的技術一般量級的數據和代碼基本沒有問題了,但是在遇到非常復雜的情況,可能仍然會力不從心,這個時候,強大的 scrapy 框架就非常有用了。

scrapy 是一個功能非常強大的爬蟲框架,它不僅能便捷地構建request,還有強大的 selector 能夠方便地解析 response,然而它最讓人驚喜的還是它超高的性能,讓你可以將爬蟲工程化、模塊化。

學會 scrapy,你可以自己去搭建一些爬蟲框架,你就基本具備爬蟲工程師的思維了。

學習資料庫基礎,應對大規模數據存儲

爬回來的數據量小的時候,你可以用文檔的形式來存儲,一旦數據量大了,這就有點行不通了。所以掌握一種資料庫是必須的,學習目前比較主流的 MongoDB 就OK。

MongoDB 可以方便你去存儲一些非結構化的數據,比如各種評論的文本,圖片的鏈接等等。你也可以利用PyMongo,更方便地在Python中操作MongoDB。

因為這里要用到的資料庫知識其實非常簡單,主要是數據如何入庫、如何進行提取,在需要的時候再學習就行。

掌握各種技巧,應對特殊網站的反爬措施

當然,爬蟲過程中也會經歷一些絕望啊,比如被網站封IP、比如各種奇怪的驗證碼、userAgent訪問限制、各種動態載入等等。

遇到這些反爬蟲的手段,當然還需要一些高級的技巧來應對,常規的比如訪問頻率控制、使用代理IP池、抓包、驗證碼的OCR處理等等。

往往網站在高效開發和反爬蟲之間會偏向前者,這也為爬蟲提供了空間,掌握這些應對反爬蟲的技巧,絕大部分的網站已經難不到你了.

分布式爬蟲,實現大規模並發採集

爬取基本數據已經不是問題了,你的瓶頸會集中到爬取海量數據的效率。這個時候,相信你會很自然地接觸到一個很厲害的名字:分布式爬蟲。

分布式這個東西,聽起來很恐怖,但其實就是利用多線程的原理讓多個爬蟲同時工作,需要你掌握 Scrapy + MongoDB + Redis 這三種工具。

Scrapy 前面我們說過了,用於做基本的頁面爬取,MongoDB 用於存儲爬取的數據,Redis 則用來存儲要爬取的網頁隊列,也就是任務隊列。

所以有些東西看起來很嚇人,但其實分解開來,也不過如此。當你能夠寫分布式的爬蟲的時候,那麼你可以去嘗試打造一些基本的爬蟲架構了,實現一些更加自動化的數據獲取。

你看,這一條學習路徑下來,你已然可以成為老司機了,非常的順暢。所以在一開始的時候,盡量不要系統地去啃一些東西,找一個實際的項目(開始可以從豆瓣、小豬這種簡單的入手),直接開始就好。

因為爬蟲這種技術,既不需要你系統地精通一門語言,也不需要多麼高深的資料庫技術,高效的姿勢就是從實際的項目中去學習這些零散的知識點,你能保證每次學到的都是最需要的那部分。

當然唯一麻煩的是,在具體的問題中,如何找到具體需要的那部分學習資源、如何篩選和甄別,是很多初學者面臨的一個大問題。

以上就是我的回答,希望對你有所幫助,望採納。